
As we mentioned before, statistics examines random mass 

phenomena. This means that during examination of a 

phenomenon many, if not infinitely many measurements 

would be possible. The set containing the outcomes of all 

these theoretically possible measurements is called 

population. Theoretically, the complete understanding of a 

variable would require the execution of all the possible 

measurement, but of course it is not possible. 

Consequently, we only observe a subset of the population, 

which is called sample. The most evident way of 

generating this subset is random selection.

We carry out measurements on the sample, the set of 

measurement results is also called sample. (That is: in 

less precise way the sample may be a group of students 

[individuals, objects] of the university as a population. In 

more precise way, the population is the height of all people 

at the university, the sample is the set of height values for 



a group that was actually measured.)

The sample might be characterized graphically or numerically as 

we learned in the last lecture, then the properties learned that 

way may be extrapolated to the population. E.g. if 25% of people 

in a group have blood type “A”, we may expect the same from the 

whole population. Since the sample is chosen randomly, it will not 

necessary represent the population, the frequency of occurrence 

of different values within the population perfectly. As a result, 

every conclusion drawn from a sample carries a burden of 

uncertainty.

What is the quantity of the uncertainty? How to define?

We are using 2 term for it: probability (P) and error E.

So in the inferencial statistics we make estimates and 

analyze them.

For example, the probability of a given variable outcome in 

a population is estimated by the relative frequency of the 

sample. The expected value of the variable is estimated by 

the mean of the sample, and the variance is estimated by 

the sample (so called empirical) variance. The difference 

between the averages of two populations can be estimated 

by the difference between the sample means (eg whether 

drug is different - different means).



But why don't we estimate the expected value with the 

median, why is there an empirical standard deviation with 

(n-1) instead of n (n is the sample size)? (If we were to 

"translate" the theoretical variance, then it would have to 

be n.) For the answer we have to consider the following.

Expected value, standard deviation, difference in the 

expected value of two populations - all measures of 

efficacy are estimated parameters. The question is how big 

a mistake can we make? Imagine estimating a given true 

value with multiple samples - the samples come from the 

population by random sampling. The difference between 

the real value and the estimate is the error.



The error „has 2 factors”: random error and systematic 

error. The random error is the variance of the estimates, 

while the systematic error is characterized by the 

difference between the „center" of the estimates and the 

estimated value.

The estimates is good, if:

1. Unbiased

2. Effective

3. Consistent

(+ 1 not mentioned…)



A few notes

• The mean is an unbiased, consistent and most 

effective estimate for estimating the expected value

• In the estimation of variance, the division by n-1 is 

unbiased, while division by n will be biased

We have only 1 sample, therefore 1 estimate and we don’t

know the real value – could we measure the error in this

case?

YES! But only the random part! We can estimate random 

error based on the sample.



Let’s show an example based on the mean (estimate of 

expected value).

Reminder: central limit theorem (CLT)

Based on the CLT we have 2 conclusion:

1. the standard error of the mean (the variability of 

estimating the mean): is the square root of the nth part 

of the sample variance. 

2. We can construct a range, that contains the mean

with a given probability: called confidence interval of 

the mean. The given probability: called confidence

level.

For the mean eg. : The limits of the 95% confidence

interval of the mean are mean+-2*SEM.

We can construct confidence intervals for other

estimats too! (Nearly for all estimates).

It shows the value of the estimate, its error and its

confidence interval.



One main tool in statistics to make decisions with a given

error probability is hypothesis tests.

In this chapter I gave detailed description in the slides, 

therefore I comment it shortly.

In hypothesis tests we would like to give an answer for a 

YES/NO question. An answer is a statement – but how to

prove a statement?

In math we have 2 possibilities:

Direct/indirect prooving.

In hypothesis tests we would like to use indirect proving, 

therefore execute the next theoretical experiments.



Falsification: refutation of the statement

Verification: supporting the statement

In math the falsification is clear – but in stat it works with a 

given probability.



… …



So we have a question and the hyotheses.

The H0 is the more important: if H0 is true in the reality we 

could see something else in the sample because of the

sampling error (we have a sample we did not measure

everybody).

Our aim is to answer the question with a decision: 

accepting or rejecting the H0.

Let’s look a table on H0 what could be the results of our

decision. In reality (that we don’t know) we have to options: 

the H0 is true or false. Or decision could be to accept or to

reject the H0.

If we accept the true H0 or we reject the false H0 we make

a good decision. The latter one called power: it gives the

probability to find (reject H0) if the H0 is false.

If we reject the true H0 we make a wrong decision called

type I. error. This probability – rejecting H0 if H0 is true –

symbilized by alfa.

If we accept the false H0 we make a wrong decision called

type II. error. This probability – accepting H0 if H0 is false –

symbilized by beta.



Let’s see an example for a hypothesis test. Sginificance level: the limit where we accept or reject H0.



Relevant: clinically important effect. …



… Let’s look a few hypothesis tests that you will learn in 

practices. I highlight here which hypothesis test could be 

used for a given problem, given variable (measuring scale), 

and what condition ave to be fullfilled.

(CLT: central limit theorem)



Matematically this is the same as the one sample t-test, if

we use the difference of paire values as a dataset.

…



… …



… It is a common problem that we get a relevant (clinically

important), but not significant (not rejected H0) result – that

means no effect? or…

+We used too small sample size

+ the variability of the variables are too large

+ wrong, or wrongly used hytpothesis test was perfromed

+ low measuring scale

+ we were unlucky

+ …

To avoid this problems it is very important to plan the

experiment before perform data collection.

A typical big question is the sample size.

Sample size video: 

https://www.youtube.com/watch?v=Hz1fyhVOjr4



Until now, we talked about the error because sampling. But

there are other source of errors called bias (systemic

error). We usually classify them into 3 category: 

Confounding

Selection bias

Information bias

Shortly, confounding bias occur when the effect on the

outcome variable is described, interpreted by a variable

(here called risk factor), but in reality the effect caused

(modified) by an other variable (a confounder).



Eg. We found that higher people has slleping problem with

higher probability and therefore we interpret that saying

that higher body high increase the sleeping problems. But

in reality the reason is not the high: the reason is the

gender – men has more probable sleeping problem. If we 

examine men and women separately we could not detect

the hight effect on sleeping problem.

(A variable could be a confounde if it has „effect” both on

the risk factor and the outcome)

Selection bias examples:

AGE: Knowing that gender has an effect on sleeping

problems, the proportion of women in a „new drug group”is

different than in the „placebo group”.

LOSS OF FOLLOW UP: – we know that AIDS is more 

frequent in i.v. drug users and homosexuals: those who 

has AIDS will more often "quit" the follow-up, than those 

who do not get AIDS, as well as IDU users more often 

„disappear”, than homosexuals

DIFFERENT POPULATION:  Fracture in Women and 

Nutrition Relationships: We choose bone trauma from a 

trauma class, control of the hospital's internal medicine 

(But there are other more frequent illnesses in the internal 

medicine , eg diabetes is more common that has an effect

on fracture !!)

Information bias examples:

RECALL BIAS: Parents of children diagnosed with cancer 

may be more likely to recall infections earlier in the child’s 



life than parents of children without cancer. 

Good source:

Catalogue of Bias Collaboration, Spencer EA, Brassey J, Mahtani

K., 2017. https://catalogofbias.org/

The following questions may be answered using lecture material, consultation with 

practice teacher, or your own investigation (on the library or the internet). These test 

questions are examples for questions that may occur in the midterm and exam tests.


