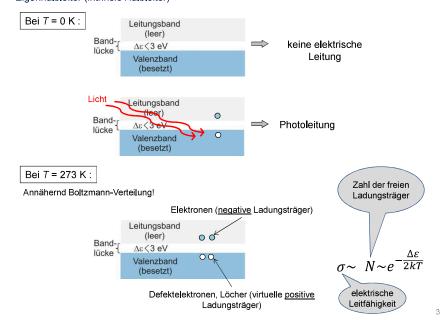
Medizinische Biophysik

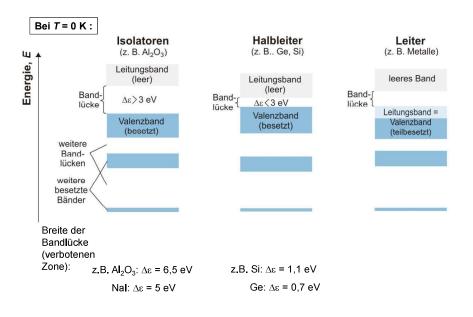
3. Vorlesung 26. 09. 2018

Struktur der Materie

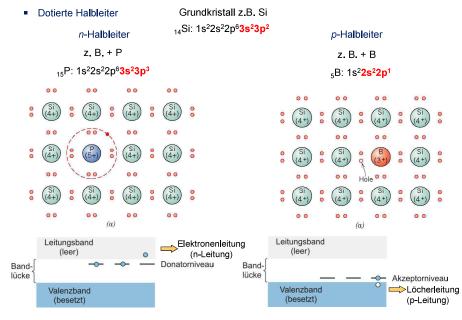
Aggregatzustände: Flüssigkeiten, feste Körper (Fortsetzung):

- Fester Aggregatzustand Kristalle f) Elektronenstruktur (Bändermodell)
- 6. Fester Aggregatzustand amorphe Stoffe
 - a) Makroskopische Beschreibung
 - b) Mikroskopische Beschreibung
- 7. Flüssigkristalle
 - a) Makroskopische Beschreibung:
 - b) Mikroskopische Beschreibung:
 - c) Anwendungen von Flüssigkristallen:
 - d) Lyotrope Flüssigkristalle:


III. Materialfamilien


- 1. Metalle
- 2. Keramiken
- 3. Polymere
- 4. Komposite

IV. Eigenschaften der Materialien


- 1. Einige mechanischen Eigenschaften
- a) Deformationstypen, Belastungsdiagramm
- b) Elastische Verformung Elastizität und Steifigkeit
- c) Plastische Verformung Festigkeit und Zähigkeit
- 2. Elektrische Eigenschaften
- 3. Thermische Eigenschaften
 - a) Erwärmung/Abkühlung
- b) Wärmeleitung
- c) Wärmeausdehnung
- 4. Typische Eigenschaften der einzelnen Materialfamilen

Eigenhalbleiter (intrinsic Halbleiter)

⇒ siehe die optischen Eigenschaften später

6. Fester Aggregatzustand - amorphe Stoffe

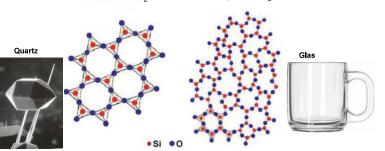
kristallines SiO₂

a) Makroskopische Beschreibung:

- Eigenvolumen aber keine Eigenform
- Isotrop
- sehr hohe Viskosität

b) Mikroskopische Beschreibung:

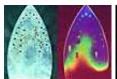
- Nahordnung
- Schwache Bewegungen



Bitumen. ..

Z.B. Glas, Harz, Wachs,

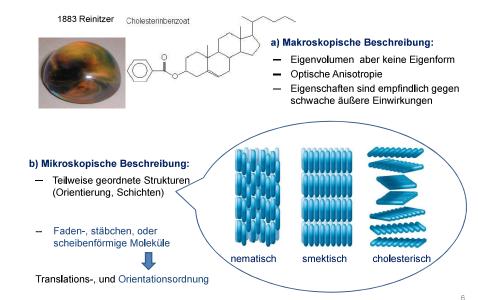
= gefrorene unterkühlte Flüssigkeiten, Gläser!

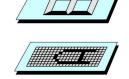

amorphes SiO₂

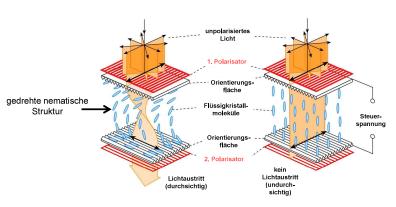
c) Anwendungen von Flüssigkristallen:

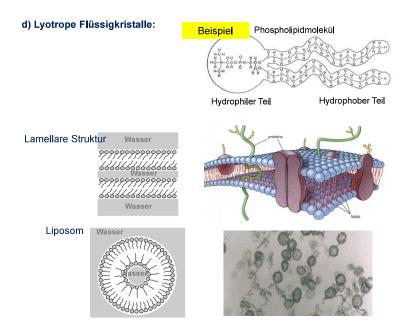
Kontaktthermographie/Plattenthermographie

<u>Grundlage</u>: thermo-optisches Phänomen (bei Temperaturänderungen ändern sich die optischen Eigenschaften)

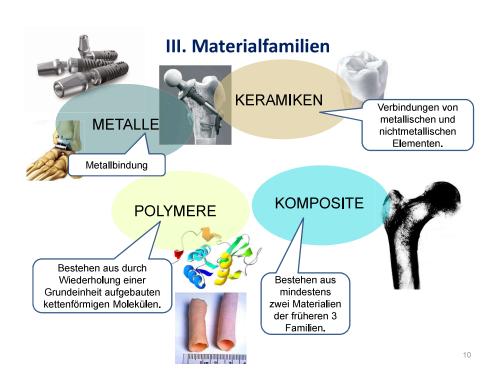





7. Flüssigkristalle - Mesophase zw. dem festen und flüssigen Zustand


LCD (liquid crystal display)

Grundlage: elektro-optisches Phänomen (durch elektrisches Feld ändern sich die optischen Eigenschaften)



Erklärung siehe später bei den
Wechselwirkungen zwischen Licht und Materie! 8

Ein Beispiel für die Verwendung (Hüftgelenkprothese):

1. Metalle

o Definition: Metallbindung

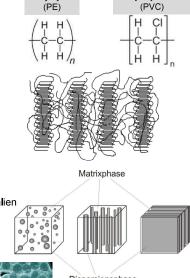
o Bindungstyp: Metallbindung

 Aggregatzustand bei üblichen Bedingungen: fest (kristallin) mit einigen Ausnahmen (z.B.Hg)

- o Herstellung: aus Schmelze
- Struktur: <u>Polykristalle</u>, aber Einkristalle und amorphe Metalle (Metallgläser) auch möglich
- o Reinmetalle oder Legierungen

2. Keramiken

- Definition: Verbindungen von metallischen und nichtmetallischen Elementen
- Bindungstyp: Ionenbindung, weniger auch kovalente Bindung
- Aggregatzustand bei üblichen Bedingungen: fest (kristallin/amorph)
- Herstellung: Sintern oder aus Schmelze
- Struktur: Polykristalle/Einkristalle/amorphe Struktur (Gläser)



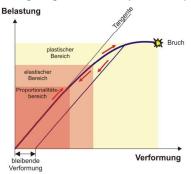
3. Polymere

- Definition: Bestehen aus durch Wiederholung einer Grundeinheit aufgebauten kettenförmigen Molekülen.
- Bindungstyp: kovalente Bindung+sekundäre Bindungen
- Aggregatzustand bei üblichen Bedingungen: flüssig/fest (kristallin/amorph)
- Herstellung: durch Polymerisation aus Monomeren
- o Struktur: amorph/teilweise kristallin
- o Polymerisationsgrad

4. Komposite (Verbundwerkstoffe)

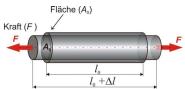
- Definition: Bestehen aus mindestens zwei Materialien der früheren 3 Familien.
- o Bindungstyp: -
- Aggregatzustand bei üblichen Bedingungen: fest (kristallin/amorph)
- Struktur: -

Polyvinylchlorid

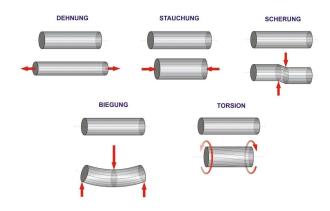

13

15

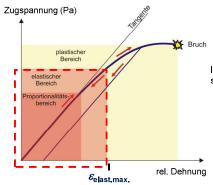
Polythylen


Belastungsdiagramm/Belastung-Verformungs-Diagramm/Spannung-Dehnungs-Diagramm:

Als Beispiel wird die **Dehnung (Zug)** im Weiteren diskutiert.

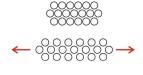

Bei der Dehnung (Zug) wird die Belastung mit Hilfe der Zugspannung (σ) und die Verformung mit Hilfe der Dehnung (ε) quantitativ charakterisiert:

- Zugspannung (σ): $\sigma = \frac{F}{A_0}$ $\left(\frac{N}{m^2} = Pa\right)$
- Dehnung (ε): $\varepsilon = \frac{\Delta l}{l_0} (\cdot 100\%)$



III. Eigenschaften der Materialien

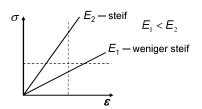
- 1. Einige mechanischen Eigenschaften (von festen Stoffen)
- a) Deformationstypen und das Belastungsdiagramm:


b) Elastische Verformung – Elastizität, Steifigkeit und das hooksche Gesetz:

Stoff	ε _{elast.max.} (%)
Knochen	0,5
Kollagen	10
Elastin	130
Aluminiumoxid	0,1
Titan	2
PMMA	20
(Polymethylmethacrylat)	
Silikongummi	700

In dem **elastischen Bereich** werden die Atome ohne Aufspaltung der Bindungen reversibel voneinander entfernt :

14

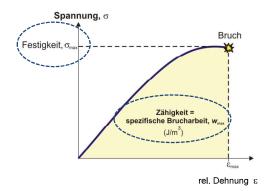


Die Elastizität eines Körpers kann mit der **elastischen Rückstellung** charakterisiert werden. Sie ist die maximal mögliche reversible Dehnung: $\varepsilon_{\rm elast.max}$ (%)

Die Größe $\varepsilon_{\text{elast max}}$ könnte man auch **Elastizität** nennen.

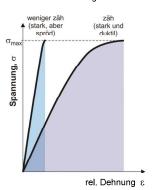
• Hookesches Gesetz: $\sigma = \underbrace{E}_{\varepsilon}$

Young-Modul oder Elastizitätsmodul oder Steifigkeit (Pa)

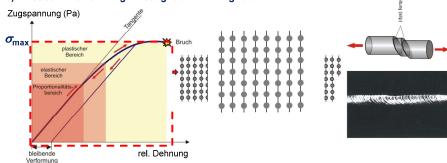

Stoff	E (GPa)
Knochen	10-15
Kollagen	0,3-2,5
Bandscheibe	0,005
Elastin	0,0005
Aluminiumoxid	350-410
Stahl	220
Titan	110
PMMA	2,4-3,8
(Polymethylmethacrylat)	
Silikongummi	≈ 0,000°

Wovon hängt die Steifigkeit der Materialien ab?

?

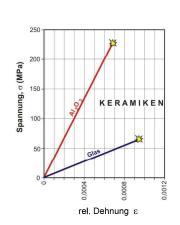

Eine andere Form des hookeschen Gesetzes (für eine Feder):

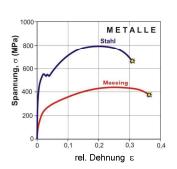
17

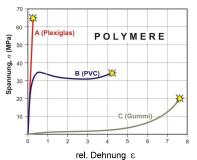


- Zähigkeit (w_{max}) (J/m³): die zur Verformung zugeführte Energie (Arbeit) bis zum Bruch (pro m³)
 - Sie kann durch das Flächenstück unter der Kurve bis zum Bruch veranschaulicht werden.
 - Die Z\u00e4higkeit h\u00e4ngt von der Festigkeit aber auch von der maximalen Dehnbarkeit des Stoffes ab.

Gleiche Festigkeit aber unterschiedliche Zähigkeit:

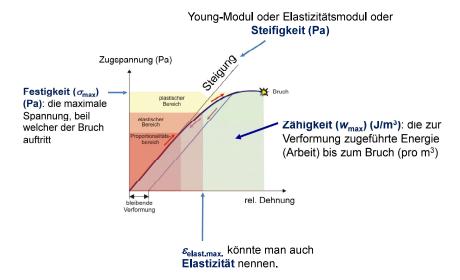

 Festigkeit (σ_{max}) (Pa): die maximale Spannung, beil welcher der Bruch auftritt


Material	σ_{\max} (MPa)
Knochen	100
Kollagen	60
Elastin	0,6
kohlenstofffaserverstärktes	≈ 1700
(61%) Epoxid	
Stahl	500
Titan	430
Aluminiumoxid	250
PMMA (Polymethylmethacrylat)	≈ 50


(?)

Wovon hängt die Festigkeit der Materialien ab?

3ei	isr	oie	le.



19

Zusammenfassung der wichtigsten Grössen bei der Beschreibun der Elastische eingenschaften lastische Verformung – Festigkeit und Zähigkeit:

s. Grundskript

3. Thermische Eigenschaften

a) Erwärmung/Abkühlung

spezifische Wärmekapazität (c)

"Erwärmbarkeit"

)	Stoff	c (J/(kg⋅K))	hohe
,	Wasser	4190	Temperatur- stabilisierungs-
	Muskelgewebe	3760	fähigkeit
	Fettgewebe	3000	
	Körpergewebe (durchschnittlich)	3500	
	Gold	126	
	Porzellan	1100	
	Glas	800	

21

23

b) Wärmeleitung

■ Wärmeleitfähigkeit (λ)

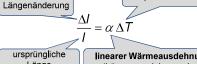
s. im 2. Semester

Stoff	λ (W/(m·K)			
Silber	420			
Titan	22			
Glas	1			
Wasser	0,6			
Muskel	0,4			
Fett	0,2			
Luft	0,025			

2. Elektrische Eigenschaften

s. Grundskript

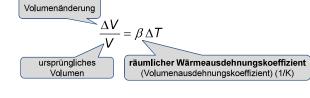
■ Elektrische Leitfähigkeit (σ) (S/m)


Flüssigkeiten: Leitfähigkeit ~ Ionenkonzentration

Feste Stoffe:

Gewebe σ (mS/m) Stoff σ (S/m) Blut 700 Silber 6,8·10⁷ graue Hirnmasse 300 Gold $4.3 \cdot 10^{7}$ Leiter weiße Hirnmasse 150 Platin $0.94 \cdot 10^{7}$ Haut 100 Titan $0,24 \cdot 10^{7}$ Fett 40 Germanium 2,2 10 Knochen Halbleiter Silizium 4.10-4 Zirkon ≈10-10 s. Bändermodell Porzellan ≈10-11 Glas ≈10⁻¹³ Isolator РММА ≈10-12 Polyethylene ≈10⁻¹⁶

c) Wärmeausdehnung



ursprüngliche Länge | linearer Wärmeausdehnungskoeffizient (Längenausdehnungskoeffizient) (1/K)

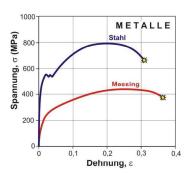
Temperaturänderung

Volumenausdehnung:

Stoff	α(10 ⁻⁶ 1/K)
Knochen	≈ 25
Zahnschmelz	≈ 11,4
Porzellan	4-16
Glas	≈ 8
Zirkon	≈ 11
Titan	8,6
Gold	14,2
Amalgam	≈ 25
PMMA	70-81
Wachs	300-500

Körpergewebe:

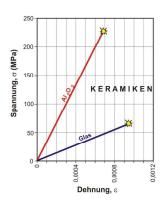
~ 1/Bindungsenergie!


Für die meisten Stoffe gilt annähernd: $\beta \approx 3\alpha$

Optische Eigenschaften: s. später im 1. Semester

Chemische und biologische Eigenschaften: s. andere Kurse

1. Metalle


- 6 Definition: Metallbindung
- o Bindungstyp: Metallbindung
- Aggregatzustand bei üblichen Bedingungen: fest (kristallin) mit einigen Ausnahmen (z.B.Hg)
- o Herstellung: aus Schmelze
- Struktur: <u>Polykristalle</u>, aber Einkristalle und amorphe Metalle (Metallgläser) auch möglich
- o Dichte: groß
- Mechanische Eigenschaften: mittelhohe Steifigkeit, hohe Festigkeit, breiter plastischer Bereich und hohe Zähigkeit
- Elektrische Eigenschaften: hohe elektrische Leitfähigkeit
- Thermische Eigenschaften: mittelhoher Schmelzpunkt, mittelgroßer Wärmeausdehnungskoeffizient, hohe Wärmeleitfähigkeit
- Weitere Eigenschaften: Neigung zur Korrosion, Metallische Farbe, oft nicht biokompatibel

25

2. Keramiken

- Definition: Verbindungen von metallischen und nichtmetallischen Elementen
- Bindungstyp: Ionenbindung, weniger auch kovalente Bindung
- Aggregatzustand bei üblichen Bedingungen: fest (kristallin/amorph)
- Herstellung: Sintern oder aus Schmelze
- Struktur: Polykristalle/Einkristalle/amorphe Struktur (Gläser)
- Dichte: mittelgroß
- Mechanische Eigenschaften: hohe Steifigkeit, mittelmäßige Festigkeit, plastischer Bereich fehlt, sehr geringe Zähigkeit, brüchig
- Elektrische Eigenschaften: sehr geringe elektrische Leitfähigkeit (Isolator)
- Thermische Eigenschaften: hoher Schmelzpunkt, geringer Wärmeausdehnungskoeffizient, geringe Wärmeleitfähigkeit

- o Beispiele aus der Medizin: Titan, Ni-Ti-Legierungen
- o Anwendungsbeispiele: Implantate, Zahnkrone, Brücke, kieferorthopädischer Bogen

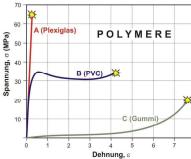
Günstige Eigenshaften von Titan:

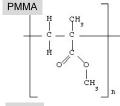
- o Kleine Dichte (4,5 g/cm3)
- o Hohe Festigkeit
- Kleine Steifigkeit (Young-Modul)
- Kleine elektrische und Wärmeleitfähigkeit
- Biokompatibel

O Nicht ferromagnetisch Stoff σ(S/m)

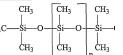
Material	σ _{max} (MPa)			Silber	6,8	3·10 ⁷	
Knochen	Stoff		E (Gold	4.3	3·10 ⁷	
Kollagen	Knochen		10-	Platin		Stoff	λ (W/(m·K)
Elastin	Kollagen		0,3	Titan		Silber	420
kohlenstofffaserverstärktes	Bandscheibe		0,0	Germanium		Titan	22
(61%) Epoxid	Elastin		0,0	Silizium		Glas	1
Stahl	Aluminiumoxid	1.3	35	Zirkon	1	Vasser	0,6
Titan	Stahl Titan				_	Muskel	0,4
Aluminiumoxid	PMMA			Porzellan	<u> </u>		
PMMA (Polymethylmethacry			2,4	Glas		Fett	0,2
1 WWA (1 Olymetry)metriacry	(i diyinida yinida d	crylat)	_	PMMA	1	Luft	0,025
	Silikongummi		≈ 0	Polyethylene	≈1	0-16	26

- $\circ~$ Beispiele aus der Medizin: Aluminiumoxid (Al $_2{\rm O}_3$), Zirkoniumdioxid (ZrO $_2$), Hydroxiapatit (HAP)
- o Anwendungsbeispiele: Implantate, Zahnkrone, Brücke




3. Polymere

- O Definition: Bestehen aus durch Wiederholung einer Grundeinheit aufgebauten kettenförmigen
- o Bindungstyp: kovalente Bindung+sekundäre Bindungen
- o Aggregatzustand bei üblichen Bedingungen: flüssig/fest (kristallin/amorph)
- o Herstellung: durch Polymerisation aus Monomeren
- Struktur: amorph/teilweise kristallin
- Dichte: klein
- o Mechanische Eigenschaften: kleine Steifigkeit, geringe Festigkeit, breiter elastischer und/oder plastischer Bereich und mittelmäßige/hohe Zähigkeit
- o Elektrische Eigenschaften: geringe elektrische Leitfähigkeit (Isolator)
- o Thermische Eigenschaften: niedriger Schmelzpunkt, mittelmäßiger Wärmeausdehnungskoeffizient, geringe Wärmeleitfähigkeit



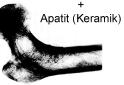
29

- o Beispiele aus der Medizin: Polymethylmethacrylate (PMMA). Polydimethylsiloxan (PDMS)
- o Anwendungsbeispiele: Kontaktlinsen, Venen, Venenklappen, Brustimplantate

Polythylen (PE)

30

4. Komposite (Verbundwerkstoffe)


- o Definition: Bestehen aus mindestens zwei Materialien der früheren 3 Familien.
- o Bindungstyp: -
- o Aggregatzustand bei üblichen Bedingungen: fest (kristallin/amorph)
- o Struktur: -
- Dichte: klein/mittelmäßig
- Mechanische Eigenschaften: hohe Festigkeit und
- o Beispiele aus der Medizin: mit Keramiken verstärkte Polymere
- Anwendungsbeispiele: Prothesen, Zahnfüllung

Knochengewebe und Dentin sind Komposite:

Kollagen (Polymer)

Hausaufgaben:

Kollagenmolekül

Aufgabensammlung

1.56, 59, 61-63, 65-72

