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* 1667: Robert Hooke — ,,Micrographia”, cells of cork
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A brief history of microscopes

* Romans were looking through glass and testing it

* 1600s: Zacharias Jansen — first telescope/compound microsope
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* 1674: Antonie van Leeuwehoek — make simple microscopes, 270 x magnification * Early 1800s

* Carl Zeiss — buisnessman in Jena — development of high quality microscope

Wop. Vonlseuwenhosk » Ernst Abbe — He put the production of optical devices on scientific bases
(circa Late 1600s)
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Emst Abbe (1840-1905)

Carl Zeiss (1816-1888)

Microscope by Carl Zeiss (1879) with optics by Abbe

Fundamentals of wave optics Resolution limit of microscope

1873: Ernst Abbe — resolution limit of light microscope

Abbe’s principle: An optical system can resolve only those details of the
specimen, which diffract light rays in a way that besides the principal

maximum at least the first order diffraction rays are allowed to contribute to the
image formation.
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Airy disks — the evidence of wave character of light How can we distinguish two image points?

The Airy disk is descriptions of the ————
best-focused spot of light that a

perfect lens with a circular aperture
can make, limited by the diffraction

of light.

Formation: the waves in same phase Ee) =
produce diffraction maximum (left) ! d
while the waves shifted by 180°

produce diffraction minimum (right). '

Point Spread Function (PSF): The
objective focuses light in a volume
and not into One point. AIRY DISC DIAMETER = 2.44 ) f/#
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Rayleigh criterion:

Objects may be resolved if their corresponding Airy disk do not overlap.

Fluorescence microscope Fluorescence microscope
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Light absorption and emission spectrum Source of fluorescence
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Fluorescent proteins

* Green Fluorescent Protein (GFP)
* first isolated from jellyfish (1960s)
* ~27 kDa, 238 aa, 11 strands B-barrel structure

* the central alpha helix contains the chormophore: Ser-65,
Tyr-66, and Gly-67

* excitation: blue (475 nm) and UV (396 nm) light

e emission: 508 nm

Transgene mice Purkinje cells

* Used as tagging protein

* Small size — has no effect on the funcion of examined
protein

* Transfected cells

* Transgene animals: all cell express the GFP

Frog muscle cells Tumor cells



2008. Nobel prize in chemistry
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Confocal laser scanning microscope

Confocal concept: a focused laser beam is used
to produce a small spot illumination on the
specimen, and a pinhole in front of the detector
eliminates out-of-focus signal

* laser beam — focused illumination

* excitation filter — selected wavelenght
* point-by-point scanning

* motorized XY scanning

» ,optical sectioning”

* 3D imaging
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General properties of lasers

light amplification by stimulated emission of radiation

¢ monochromatic Penetration of light into the skin
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Possibility of very short pulses — ps, fs

LSub-cu[ancous structure

Possibility of high power — kW - GW

Light intensity is attenuated due to absorption, reflection,
refraction.

Penetration depth depends on the wavelength.

Comparison the imaging of fluorescence and confocal microscopes

Confocal and Widefield Fluorescence Microscopy
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Two-photon microscopy Light absorption and emission spectrum

One photon excitation Two photon excitation

1931. Maria Goppert-Mayer
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Advantages ging

* excitation only in a tiny focal volume —
reject out-of-focus

. L. . objective
* low laser power — in vivo imaging
* tunable laser source — infrared spectral range dicroic mirror (700 nm)
(700-1300 nm) — reduced scattering —
* deep penetration i;%e‘;ggane‘ é XYkSEZkEHI'IEF myosin P e e e w
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* optical sectioning — 3D imaging red chanel

600-700nm 1 able range: 700-1400 nm

Frequency: 80 MHz
Impulse lenght: 100 fs
Average power: 3 W

* imaging without labeling

10 um

myelin sheats adipocytes dental tubules

mice skin - keratin



3D imaging Multiple fluorescent labeling

Comparison the dermal collagen structure of a control and type 2 diabetes affected mice ”

Optical sectioning,

z =80 um
200 pm x 200 pm
exc: 990 nm
renal cortex collecting ducts and JGA cells
green: quinacrine (renin-positive granules), Hoechst 33342 (nuclei), and autofluorescence; red: 70 kDa rhodamine dextran (vasculature).
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How big are things? Superresolution microscopy

The Royal Swedish Academy of Sciences has decided to award the

2014 NOBEL PRIZE IN CHEMISTRY

Standard Optical Microscopes Super-Resolution

imm 100pum 10um

Mustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

Eric ‘Betzig, Stefan W. Hell
and William E. Moerner

“for the development of super-resolved fluorescence microscopy”
J f  Sup . <



Superresolution microscope iy

* excitation laser + depletion laser
2014. Eric Betzig, Stefan W. Hell és William E.

. . * point-by-point scanning
Moerner were awarded Nobel-prize in chemistry

* STED (stimulated emission depletion microscopy) ad

STED: stimulated emission depletion microscopy
2018. August — STED device arrived in our — g :
Institute E » i b aN. -
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Checklist

v resolution limit of image formation

v" Abbe’s principle 5=061

nsino

v" working principle of fluorescence microscope: illumination, excitation/emission
spectra, Stokes-shift, function of dicroic mirror

v" sources of fluorescence: intrinsic, extrinsic

v" GFP protein

v" working principle of confocal microscope: illumination, function of pinhole

v" working principle of two-photon microscope: properties of laser source,
excitation/emission spectra, penetration ability, advantages
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v superresolution microscopy: principle of STED imaging
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