
# Strahlungsdetektoren



Die Basis aller Messungen (auch Beobachtungen) ist die **Wechselwirkung** mit dem zu messenden System.
Ohne Wechselwirkung ist es **NICHT** möglich, Information zu gewinnen.

## Szintillationsdetektor

Feste Szintillatoren: Cu- und Mg-haltiges ZnS

TI-haltiges NaI

Flüssige Szintillatoren: Anthracen, Stilben, Naphtalen ...

Die Größe des Lichtimpulses ~ Energie, welche die Ionisation auslöst

Die Zahl der Impulse ~ Aktivität des Präparates

siehe Praktikum: Nukleare Grundmessung

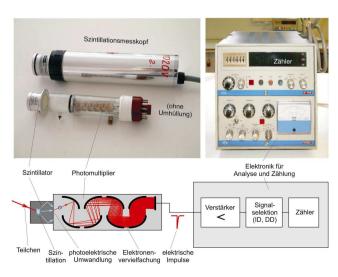
## Strahlungsdetektoren

#### Nachweis über elektromagnetische Wechselwirkung mit Materie

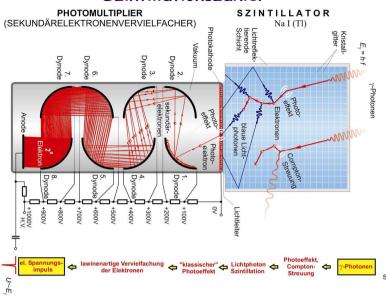
- 1.) Szintillationsdetektoren:
  - ✓ Szintillationszähler NaI(TI)
- 2.) Gasionisationsdetektoren
  - ✓ Ionisationskammer, Proportionalzählrohr, Geiger-Müller Zählrohr...
- 3.) Halbleiterdetektoren:

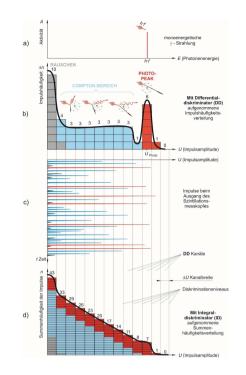
Halbleiter-Sperrschicht Detektor

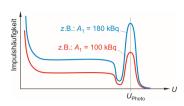
4.) Spurdetektoren:


Nebelkammer, Blasenkammer, Funkenkammer...

#### Nachweis über nicht elektromagnetische Wechselwirkung mit Materie


- 1.) Neutronendetektor
- 2.) Neutrinodetektor


~

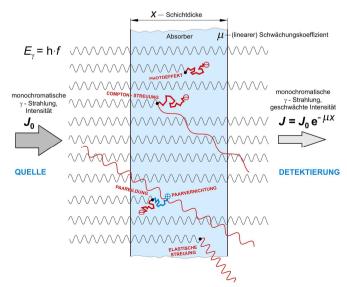

## Szintillationsdetektor



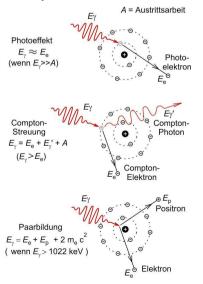
### Szintillationszähler



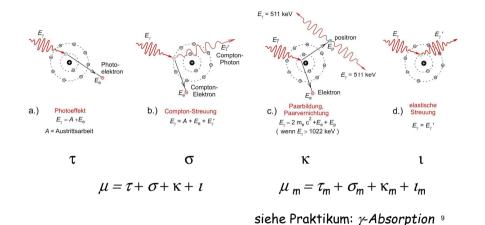





 $U_{Photo} \sim E$ 


siehe Praktikum: Gamma-Energie

6


## Szintillationsdetektor



## Elementarprozesse der Schwächung



## Elementarprozesse der Schwächung



# Physikalische Größen, die den µ beeinflussen

- ρ Dichte des Mediums/Absorbents
- √Q Qualität des Absorbents
- ✓ Strahlungsart: EMW, Teilchenstrahlung. ( $\alpha$ ,  $\beta$ , p, n,...)

 $\mu = \mu(\rho, Q, Strahlungsart, Energie, ...)$ 

Massenschwächungskoeffizient:

$$\mu_m = \frac{\mu}{\rho}$$

 $\mu_m$  ist von der Dichte unabhängig geworden!

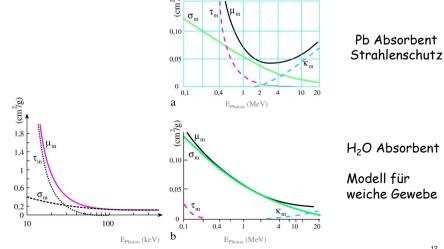
Maßeinheit:

$$\frac{cm^{-1}}{g \cdot cm^{-3}} = \frac{cm^2}{g}$$

10

den Exponenten  $\mu \cdot \mathbf{x}$ , kann man mit dem  $\mu_{\mathrm{m}}$  umschreiben :

Maßeinheit:  $cm \cdot \frac{g}{cm^3} = \frac{g}{cm^2}$ 


Massenbedeckung  $x_m$ 

gibt die Masse des Stoffes in einem Prisma mit der Länge  $\boldsymbol{x}$  und Querschnitt von 1 cm² an

 $D_m = D \cdot \rho$   $D_m$ : Halbwertsmasse

Benützung von  $\mu_m$  ist vorgezogen im Vergleich zum  $\mu$ .

# Elementarprozesse der Schwächung



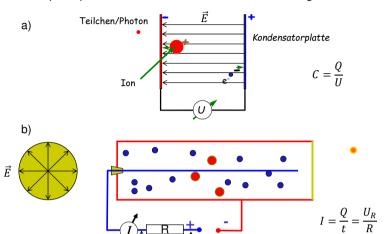
siehe Praktikum:  $\gamma$ -Absorption

#### Vorteil:

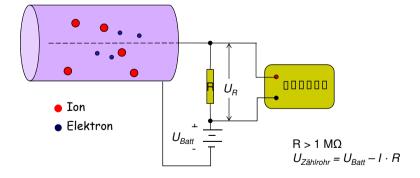
> Szintillationszähler besitzen eine hohe Nachweiseffektivität für  $\gamma$ -

Strahlung;

| Wirkungsgrade für verschiedene Radionuklide<br>Mittelwerte aus Messungen mit 100 cm² Präparaten |                                                                                                                                                                                           |                                     |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| hitelwerie aus Messungen mit 100 7-141832353536405750505750505111112312312531                   | cm* Präparaten  ca. 14% ca. 18% ca. 25% ca. 5% ca. 5% ca. 30% ca. 7% ca. 27% ca. 27% ca. 27% ca. 28% ca. 3% ca. 8% ca. 7% ca. 21% ca. 12% ca. 12% ca. 12% ca. 12% ca. 12% ca. 21% ca. 35% |                                     |
| 7-204<br>um-241 α<br>2-238 α                                                                    | ca. 43%<br>ca. 22%<br>ca. 12%                                                                                                                                                             | http://www.graetz.com/como-170.html |
|                                                                                                 | r-89<br>r-90 / Y-90 (auf Sr-90 bezogen)<br>-99m<br>-1111<br>123<br>125<br>131<br>137<br>u-198<br>+204<br>m-241 α                                                                          | r. 99                               |


#### Nachteil:

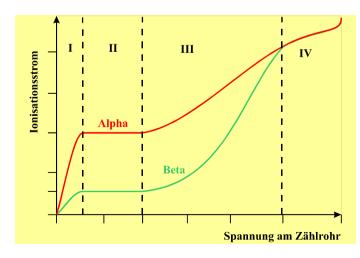
> Ihr Nachteil besteht in der relativ geringen Energieauflösung  $\Delta E/E$  von ca. 10%.


13

### Gasionisationsdetektoren

Messprinzip: die Gasionisation liefert elektrisches Signal




## Ionisationskammer



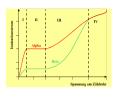
z.B. Ar (90%) und Ethanol (10%)

(Zählgas +Löschgas)

#### Spannung-Strom Charakteristik des Ionisationsdetektors



$$U_R = f(U_{Batt}, Strahlungsart, Energie, ...)$$


## Spannungsbereiche für Ionisationskammer

I. Rekombinationsbereich

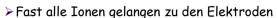
II. Sättigungsbereich (Ionisationskammer-Bereich)

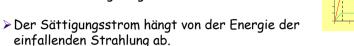
III. Proportionalitätsbereich

IV. Auslösebereich (G-M-Bereich)



#### ad. I.:


√Die angelegte Spannung ist zu klein und die entstandenen Ladungen können die Elektroden nicht erreichen.


✓ Daher kann es geschehen, dass sich einige Ar<sup>+</sup>-Ionen wieder mit Elektronen zu neutralen Ar-Atomen vereinigen. Dieser Prozess wird **Rekombination** genannt.

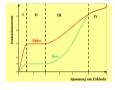

17

II. Sättigungsbereich (Ionisationskammer-Bereich)

Es tritt keine Rekombination mehr auf.



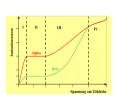





 Der Sättigungsstrom für a-Teilchen ist wegen der unterschiedlichen Ionisationsfähigkeiten grösser als der Sättigungsstrom der β-Teilchen.

Bereich, in dem keine Rekombination mehr stattfindet und das elektrische Feld noch nicht zu stark ist, weitere sekundäre Ionisationen verursachen zu können.

18


## III. Proportionalitätsbereich



- > Es sind weitere Ladungen durch Stoßionisationen erzeugt: Sekundärionisation
- > Die Anzahl der durch Sekundärionisation erzeugten Ionen ist proportional zur Anzahl der primär erzeugten Ionen.
- > Die Stromstärke ist noch der Teilchenenergie proportional.

## IV. Geiger-Müller-Bereich

- Die Anzahl der Sekundärionisationen ist so groß, daß es keine Rolle spielt, ob bei der Primärionisation einige Ionen mehr oder weniger entstehen.
- > Das Signal ist uniformiert, es ist unabhängig von der Energie der ionisierenden Strahlung
- > Die Anzahl der einfallenden Teilchen wird registriert.

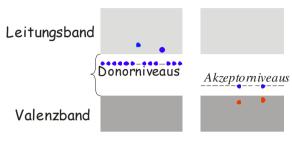


Das Löschen der Zählrohrentladung:

- 1. Hoher Zählrohrwiderstand
- 2. Füllgas
- 3. Positive Raumladung

$$R > 1 M\Omega$$

 $U_{Z\ddot{a}hlrohr} = U_{Batt} - I \cdot R$ 


Wegen des Durchdringsvermögens der Gamma/Röntgen-Strahlungen besitzt die GM-Röhre nur einen Wirkungsgrad von 0,1%.

#### Vorteile:

- seit mehr als 100 Jahren sind die Ionisationsvorgänge untersucht ausführliche theoretische und praktische Kenntnisse;
- > Messvolumen von mm<sup>3</sup> Liter;
- > ermöglicht absolute Messung Kalibrationsmessungen der anderen Detektoren/Dosimeter:
- > Messung der sehr großen Dosiswerten;
- > Schließen zur Energiedosis in Geweben.
- > Echzeitmessung bei der Strahlentherapie!!

Halbleiter-Detektor

Dotierte Halbleiter



n-dotiert p-dotiert

siehe Praktikum: y-Energie

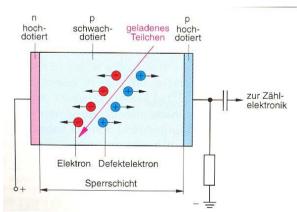
22

## Halbleiter-Sperrschicht Detektor

p-n Übergang

vor Kontakt

p-dotiert


http://www.zum.de/dwu/ depotan/apet101.htm

Die Kreise symbolisieren bewegliche <u>Majoritäts-</u>

(Elektronen (-) und Löcher (+)), die eckigen Figuren stellen Atomrümpfe dar.

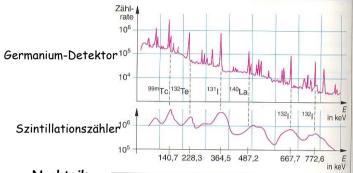
RLZ – Raumladungszone bzw. Sperrschicht

# Halbleiter-Sperrschicht Detektor



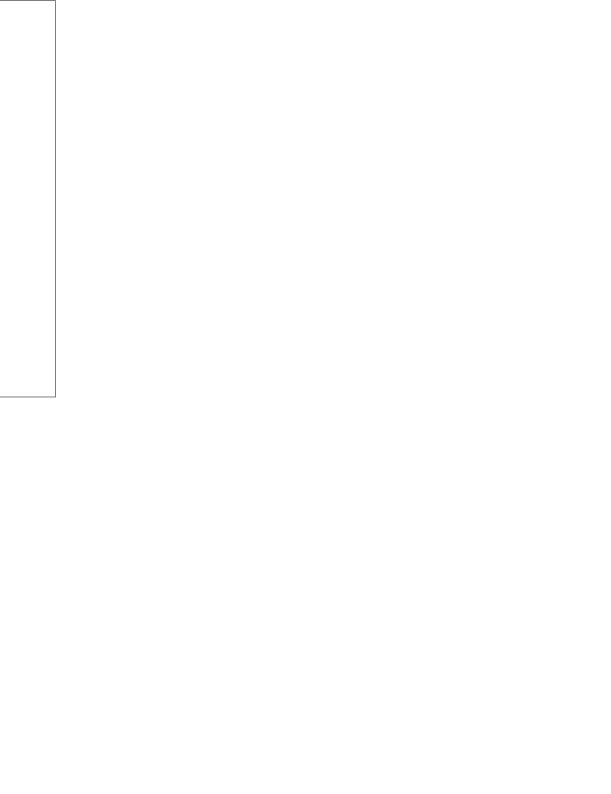
Wird der n-Bereich mit dem + Pol und der p-Bereich mit dem - Pol einer Spannungsquelle verbunden, so verbreitet sich die Sperrschicht.

Ein el. Ladung tragendes Teichen erzeugt in dieser Sperrschicht Elektronen und Defektelektronen. — Es kommt zu einem kurzzeitigem Strom.


nach Kontakt

Kontakt

# Halbleiter-Sperrschicht Detektor


#### Vorteile:

- Im Halbleiter können auch Teilchen höherer Energie vollständig abgebremst werden. (wegen der höheren Dichte) Sie besitzen eine gute **Energieauflösung ΔE/E von weniger als 1%**.



Nachteil:

Sie sind sehr temperaturempfindlich.

