
# Medizinische bildgebende Verfahren

Institut für Biophysik und Strahlenbiologie

László Smeller

http://biofiz.semmelweis.hu/

# Überblick der medizinischen bildgebenden Verfahren



#### Informationen

Das Fach wird zusammen mit dem Institut für Humanmorphologie und Entwicklungsbiologie und mit dem Lehrstuhl für Nuklearmedizin organisiert.

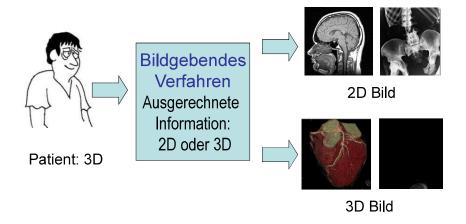
Kreditpunkte: 2

Zuständig für die Studenten in dem Institut für Biophysik:

Dr. Ádám Orosz, E-Mail: <a href="mailto:orosz.adam@med.semmelweis-univ.hu">orosz.adam@med.semmelweis-univ.hu</a> Voraussetzungen für die Anerkennung des Semesters: 75%-ige Teilnahme an den Lehrveranstaltungen

Die drei Praktikumsthemen in dem Inst. für Biophysik:

- Digitale Bildverarbeitung
- Sonographie
- Molekulare Bildgebung


Ein viertes Praktikum in Skillzentrum

Prüfungsform: Kolloquium;

Das Kolloquium besteht aus 2 Teilprüfungen, aus dem anatomischen Teil und dem schriftlichen biophysikalischen Teil.

Zum Bestehen sind 50% aus beiden Teilprüfungen zu erreichen.

### Bild



3D => 2D

Möglichkeiten um die dreidimensionalen Information in 2 Dimensionen zu repräsentieren:



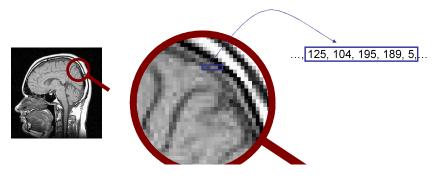
- Summationsbild (Informationsverlust)
- Schichtbild (Tomographie)
- Oberflächenbild
- •"Volume rendering"



#### Digitale Bildspeicherung: Grauwertbild

Digitales Bild:  $n \times m$  Bildpunkte

Gespeichert als  $n \times m$  Matrix (Tabelle) von Zahlen.


| Į | 56 | 48 | 43 | 26  | <br>52  |
|---|----|----|----|-----|---------|
|   | 61 | 50 | 44 | 46  | <br>66  |
|   | 66 | 68 | 70 | 78  | <br>87  |
|   | 63 | 65 | 71 | 82  | <br>90  |
|   |    |    |    |     | <br>    |
|   | 80 | 87 | 90 | 101 | <br>106 |

Grauwerttiefe:

bei Schwarz/Weiss Photographien 8 bit  $\Rightarrow$  28= 256, aber bei CT: 12 bit  $\Rightarrow$  212= 4096 Abstufungen

## Digitales Bild

- Besteht aus Bildpunkten (pixel=picture element)
- · Gespeichert als Tabelle der Zahlen
- Jede Pixel ist mit einem Zahl (Grautonbild), oder mit drei Zahlen (Farbbild) beschrieben

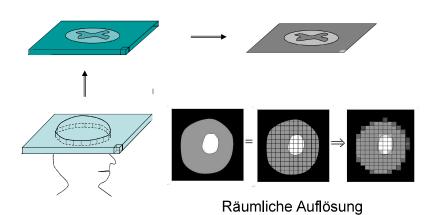


### Bispiel für Grauwerttiefe



#### Digitale Bildspeicherung: Frabbilder

Gespeichert als *drei n* x *m* Matrizen (Tabellen) von Zahlen.


| 54             | 111 | 40  | 22 |     | 52 |         |
|----------------|-----|-----|----|-----|----|---------|
| 5              | 2 A | 605 |    |     | 5  | 7<br>50 |
| 5              |     |     | 43 |     |    | 52      |
| 87             | 61  |     | 44 | 46  |    |         |
| 66             |     |     |    |     |    | 87      |
| <mark> </mark> |     |     | 71 |     |    |         |
| 8 g            |     |     |    |     |    |         |
| <u> </u>       |     | 87  |    | 101 |    | 106     |

Rot Grün Blau Kanäle ⇒ RGB Bild

#### Farbtiefe:

24 Bit 3x8 Bit 2<sup>24</sup>= 16,7 Millione Farben "True-color bild"

#### Pixel-voxel



Typische CT Bilder: 1024 x 1024 Bildpunkte

#### Kompressionsverfahren

600x800 Pixel 24Bit bild braucht 1,4 MB Speicherkapazität

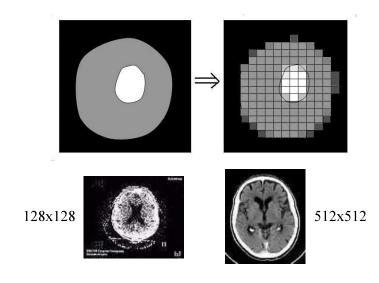
Kompressionsmöglichkeiten:

TIF (Tagged Image File Format)


Kompression ohne informationsverlust ist möglich

GIF (Graphics Interchange Format)

Verwendet nur 256 Farben Informationsverlust!


JPEG (Joint Photographic Expert Group)
Hoche Komprimirungsfaktor
(Kleine Dateigrösse)

Wesentlicher Informationsverlust!!

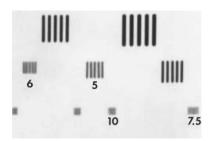




### Auflösung und Voxelgrösse



### Auflösung


#### Bei Mikroskopie

Auflösungsgrenze: δ

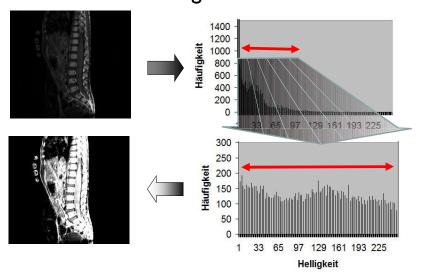
Auflösungsvermögen:  $^{1}/_{\delta}$ 

Z.B.: 2000 <sup>1</sup>/<sub>mm</sub>

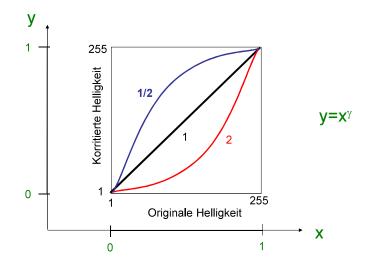
#### in Radiologie



6 Linienpaare/cm


## Ziel:

- Erhöhung der Bildqualität
- Rauschenunterdrückung (Filterung)


Bildverarbeitung

- Betonung der Einzelheiten
  - Raumliche Information: Zoom
  - Grauwert-Information: Fensterung
- Bildsegmentierung
- Bildregistrierung
- ...

### Kontrastmanipulation mit Hilfe des Histogrammes



### Kontrast-Transfer Funktion



#### 1400 1200 Häufigkeit 1000 800 600 400 200 33 65 97 129 161 193 225 255 Korritierte Helligkeit 65 0 255 300 250 200 150 100 0 Originale Helligkeit X 0

# Bildglättung

Korrigierung der lokalen Störungen mit Durchschnittsbildung







#### Durchschnittbildung:

Neue Helligkeit = 
$$\frac{74 + 90 + 115 + 92 + 255 + 90 + 49 + 66 + 108}{9} = 103$$

# Filtrierung

- Rauschenart soll bekannt sein
  - zufällig
  - systematisch









original

zufällig

systematisch

# Bildglättung

Korrigierung der lokalen Störungen mit Durchschnittsbildung









#### Durchschnittsbildung:

Neue Helligkeit = 
$$\frac{74 + 90 + 115 + 92 + 255 + 90 + 49 + 66 + 108}{9} = 103$$

# Bildglättung

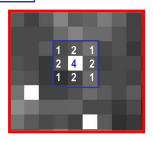
#### Korrigierung der lokalen Störungen mit Durchschnittsbildung



Filtrierung Durchschnittsbildung






#### Durchschnittsbildung:

Neue Helligkeit = 
$$\frac{74 + 90 + 115 + 92 + 255 + 90 + 49 + 66 + 108}{9} = 103$$

## Bildglättung

Korrigierung der lokalen Störungen mit gewichteter Durchschnittsbildung (Faltungsmethode)





Kernel 1 2 1

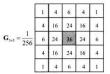
$$\frac{\boxed{1\cdot74+\boxed{2\cdot90+\boxed{1}115+\boxed{2\cdot92+\boxed{4\cdot255+\boxed{2\cdot90+\boxed{1}49+\boxed{2\cdot66+\boxed{1}108}}}}{\boxed{1+2+1+2+4+2+1+2+1}}=112$$

### Bildglättung

Korrigierung der lokalen Störungen mit gewichteter Durchschnittsbildung








### Beispiele für Kerneln

#### Für Glättung:









Mittelung

3x3 Gauss-Kernel 5 x 5 Gauss-Kernel

#### Für Erhöhung der Bildschärfe:








Faltungsmethode

# Bildglättung

#### Korrigierung der lokalen Störungen mit Medianfilter



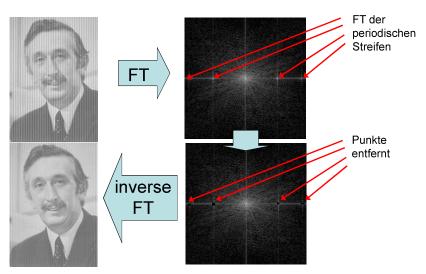




49, 66, 74, 90, 90, 92,108, 115, 255 Median

Neue Helligkeit = 90

### Original mit Rauschen Durchschn. Median







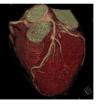



Entfernung der periodischen Störungen mit Fourier Transformation





### CT


 Computed tomography
 Τομοσ =Schicht (griechisch)
 (tomos)



=> Tomographie =Schichtaufnahme

Auf der Körperachse senkrecht stehende Schicht

Heute: Mehrschict-CT (Multisclise-CT) 256 Schichten



# Klassifizierung der tomographischen Verfahren

Absorptions-tomograpie

- Röntgen CT
- MRI
- Optische

Emissionstomographie

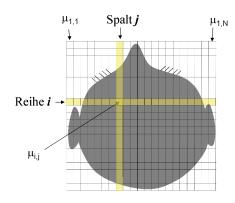
- PET
- SPECT

### Historie der Tomographie

Godfrey N. Hounsfield und Allan M. Cormack






- 1974 erste klinische Anwendung
- 1976 ganzkörper-CT
- 1979 Nobel Preis
- 1990 spiral CT
- 1992- multislice
  - 2006: 64 Schichten
  - 2011: 256 Schichten

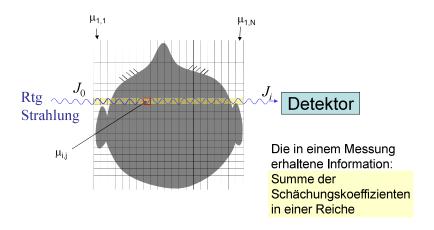




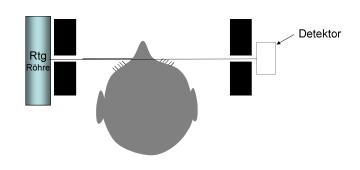


# Grundprinzip der Computertomographie

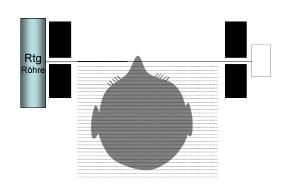



In einem Kästchen ist μ (Schwächungskoeffizient) konstant.

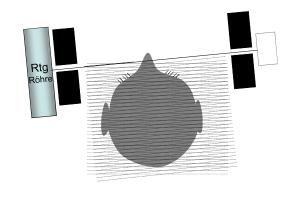
=> die Einzelheiten die kleiner als die Kästchengröße sind, werden nicht aufgelöst.


μ<sub>i,j</sub> ist der Schwächungskoeffizient des *j*-ten Elementes in der Reihe *i*.

NxN Tabelle (Matrix)

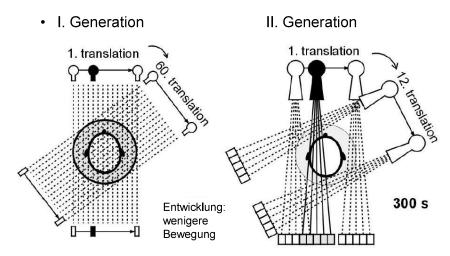

# Messung und Bildrekonstruktion




# Prinzip der Abtastung



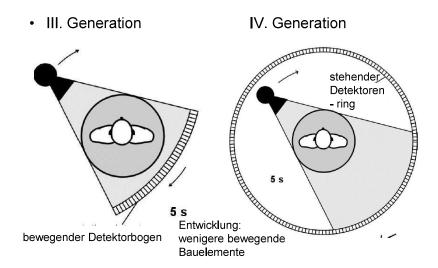
# Prinzip der Abtastung




# Prinzip der Abtastung



CT von erster Generation


### Technishe Realisierung, Generationen



#### Bildrekonstruktion

Filtrierte Rückprojektion Radon-Transformation

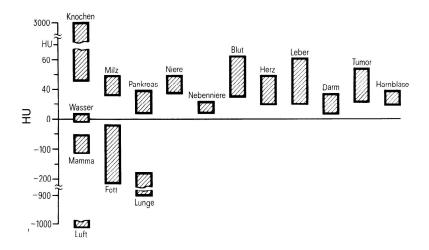
### Technishe Realisierung, Generationen



# Hounsfield Skala (CT Wert)

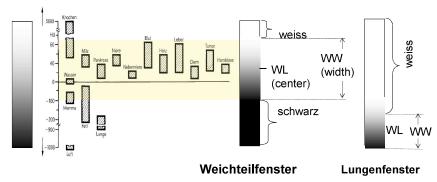
$$HU = \frac{\mu - \mu_{wasser}}{\mu_{wasser}} 1000$$
 relative Skala für  $\mu$ 

Wasser = 0


Luft = -1000

Knochen 100-1000

Weichteilgewebe ≈0


Lunge <0

# CT Werte von einigen Gewebe

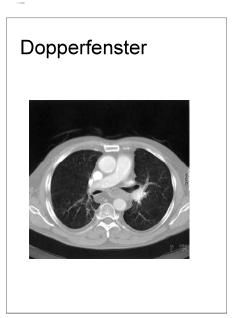


# Fensterung

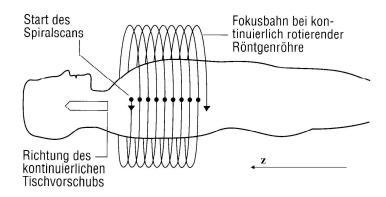
#### Grautonskala






### Lungenfenster

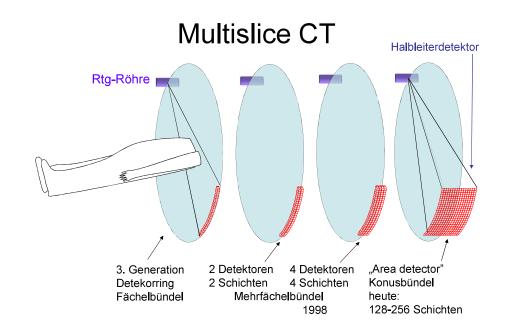
Mitte = -720 Breite = 750 (-1095 ...-345)











# Spiral CT



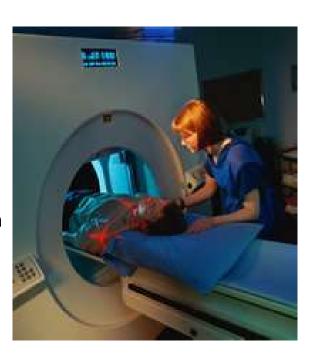
Das Schichtbild kann in einem *beliebigen z* Position gerechnet werden.

### **Erste Generation CT**





## Moderne CT (3. o. 4. Generation)




### 16 Schichten-CT



CT

Einstellung mit Laserlichtstrahlen



# Aufbau eines CT-Gerätes (3. Gen.)





### Entwicklung der CT-Aufnahmen

| Jahr | Zeit (s)/<br>Aufnahme | Schicht<br>Dicke | Anzahl d.<br>Schichten |
|------|-----------------------|------------------|------------------------|
| 1980 | 10                    | 10               | 25-30                  |
| 1985 | 5                     | 8-10             | 30-45                  |
| 1990 | 1                     | 3-5              | 100                    |
| 1995 | 0,75                  | 3                | 100                    |
| 1999 | 0,5                   | 1-3              | 220                    |
| 2003 | 0,4                   | 0,5-0,75         | 400-1200               |
| 2004 | 0,33                  | 0,5-0,75         | 600-2500               |
|      |                       |                  |                        |

# 3D Darstellung

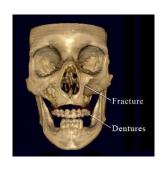
Bei einem modernen multislice CT: einige 100 Schichtaufnahmen!!

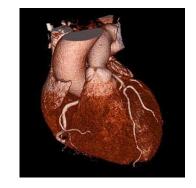
Große Datenmenge!

Es kann nicht Schicht zu Schicht betrachtet werden =>

Dreidimensionale (3D) Darstellung

## 3D Darstellung


#### Surface rendering


Zeigt die Oberfläche eines Raumteiles der größere CT-Wert hat als ein Schwellenwert.

#### Volume rendering


Die Volumenelemente haben unterschiedliche Durchsichtbarkeit, abhängig von ihrem CT-Wert (Weiche Gewebe transparent, Knochen fast intransparent.)

# Surface rendering





### Volume rendering



Eine drehende Version findet man hier: http://wwwgraphics.stanford.edu/software/ volpack/movies/colorhead.mpg

#### Virtuale Kolonoskopie



Automatische Bildverarbeitung: Erkennung von Polypen Gerichtliche Probleme!

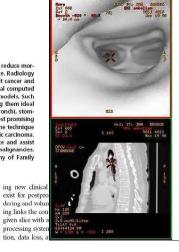
FIGURE 1. Virtual colonoscopic view of polyp (arrow) in left colon.

AMERICAN FAMILY PHYSICIAN www.aafp.org/afp VOL 66, No 1 / JULY 1, 2002 pp 107-112

### Virtuale Endoskopie

JULY 1, 2002 / VOLUME 66, NUMBER 1

www.aafp.org/afp


AMERICAN FAMILY PHYSICIAN 107

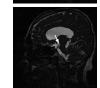
#### Virtual Endoscopy: A Promising New Technology

BRADFORD J. WOOD, M.D., and POUNEH RAZAVI, M.D. National Institutes of Health, Bethesda, Maryland

Growing evidence shows that early detection of cancer can substantially reduce motality, necessitating screening programs that encourage patient compliance. Radiology is already established as a screening tool, as in mammography for breast cancer and ultrasonography for congenital anomalies. Advanced processing of helical computed tomographic data sets permits three-dimensional and virtual endoscopy models. Such models are noninvasive and require minimal patient preparation, making them ideal for screening. Virtual endoscopy has been used to evaluate the colon, bronch, stomach, blood vessels, bladder, kidney, larynx, and paranasal sinuses. The most promising role for virtual endoscopy is in screening patients for colorectal cancer. The technique has also been used to evaluate the tracheobronchial tree for bronchogenic carcinoma. Three-dimensional and virtual endoscopy can screen, diagnose, evaluate and assist determination of surgical approach, and provide surveillance of certain malignandes. (Am Fam Physicians) 2002;66:107-12. Copyright® 2002 American Academy of Family Physicians.)

ecent advances in imaging technology allow three-dimensional and virtual endoscopic models to be constructed from helical computed tomographic (CT) data sets. Helical, or spiral, CT scanning permits continuous imaging as the radiographic




#### Virtuale Endoskopie: weitere Beispiele













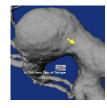
Left Lateral Ventricle, approach from the Posterior Horn towards the Anterior Horn.

Formen of Monroi, approach from Right Lateral Ventricle.

Forman of Monroi (left and right), approach from Third Ventricle.

(C) 1998-2001, Dirk Bartz, WSI/GRIS, University of Tübingen

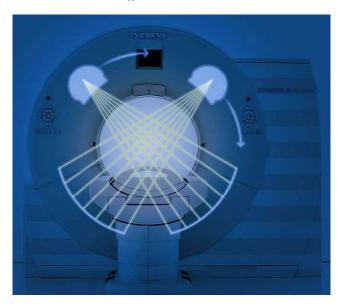
### Virtuale Endoskopie: weitere Beispiele


Endoscopic View Overview





Entering fusiform aneurysm in A, cerebri media.






Leaving fusiform aneurysm in A. cerebri media.

(C) 1998-2002, Dirk Bartz, WSI/GRIS, University of Tübingen

### "Dual source" CT



Umdrehungszeit: 0.33 s

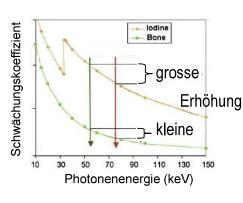
#### **Dual Source**

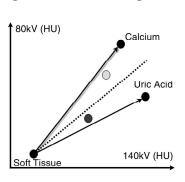
Eine Aufnahme: 1/4 Umdrehung=> 83 ms!

Herzaufnahmen

#### **Dual Energy**

Unterschiedliche Anodenspannungen 2 Aufnahmen mit unterschiedlichen Strahlungshärte => Klassifizierung der Geweben

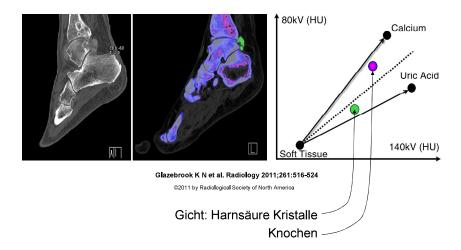

# Spezielle CT Verfahren/Geräte


#### **Dual Energy-Dual Source**

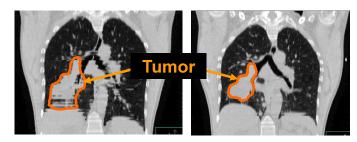
4D

Mikro (nano)

#### Prinzip der Dual-Energie Abbildung







Fletcher et al. Radiol Clin N Am 47 (2009) 41–57 doi:10.1016/j.rcl.2008.10.003 2009 Elsevier Inc. All rights reserved.

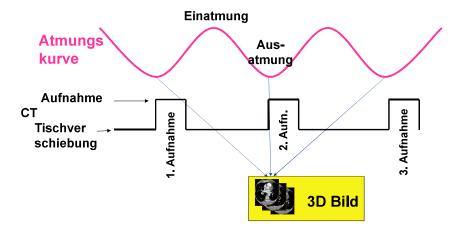
Glazebrook K N et al. Radiology 2011;261:516-524 ©2011 by Radiological Society of North America

#### Anwendung der Dual-Energie Aufnahme



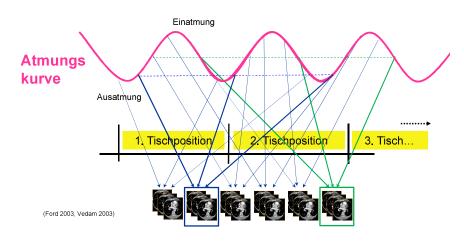
# Atmungssynchronisierte CT Aufnahme




Gewöhnliche CT Aufnahme mit Bewegungsfehler

Atmungssynchronisierte CT Aufnahme

Medical College of Virginia, Richmond VA


### Synchronisierung zu Atemzyklus

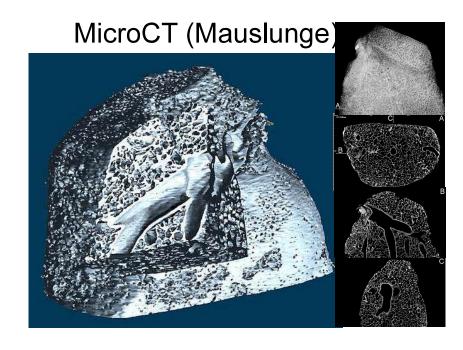
Bilder bei unterschiedlichen Tischpositionen, in gleichen Atmungsphasen

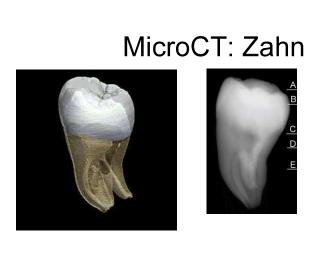


### 4D-s CT

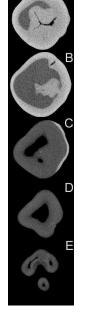
Bilder bei unterschiedlichen Tischpositionen, bei unterschiedlichen Atmungsphasen kombiniert.




# EKG-gesteuerte Sequenzscans des Herzens



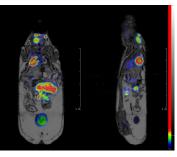

## MicroCT


Objektgrösse: einige cm (Kleintiere, Versuchstiere) Auflösung: einige x 10  $\mu m$ 








Ca!



# Nanospect-CT in dem Institut für Biophysik und Strahlenbiologie







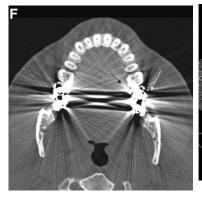
### **CT** Artefakte

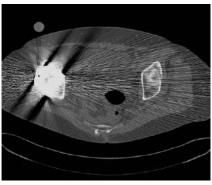
#### Artefakte können wegen

- Bewegung des Patienten
- Fehler der Messelektronik oder Messdetektoren
- Metallimplantate
- Überschreiten des Messvolumens
- Teilvolumeneffekt
- Aufhärtung der Strahlung auftreten

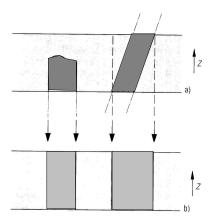
### Artefakte

Messelektronikfehler





Bewegungsartefakt




### Artefakte

Metalartefakte

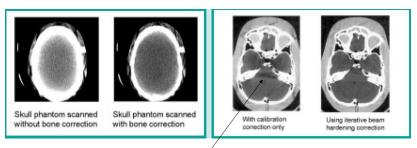




#### Artefakte: Teilvolumeneffekt



## Strahlenbelastung der CT Untersuchung




"...survey in the UK, CT scans constituted 7% of all radiologic examinations, but contributed 47% of the total collective dose from medical X-ray examinations in 2000/2001 (Hart & Wall, European Journal of Radiology 2004;50:285-291)."

47% der Strahlenbelastung kam aus der CT Aufnahmen die nur 7% der radiologischen Aufnahmen gaben. 2000/2001

### Artefakte: Aufhärtung

Die weiche Strahlung wird besser absorbiert => nach der Absorption in Knochen das Verhältnis der harten Strahlung erhöht sich (Aufhärtung).



Effekt der Aufhärtung

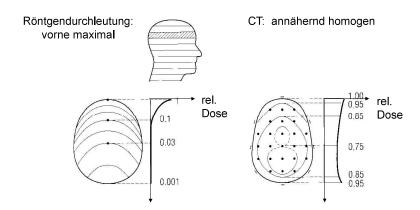
### Strahlenbelastung

Untersuchung effektive Dose (mSv)

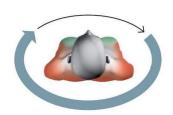
Röntgenaufnahme des Brustkorbes 0,02

Kopf CT 1,5

Abdomen + Thorax CT 10 Herz CT Angiographie 7-13


Abdomen CT

**Thorax CT** 


CT Colonographie 4-9

Hintergrundstrahlung: 2,4 mSv/Jahr, Dosisbeschränkung: 50 mSv/J (100 mSv/5J)

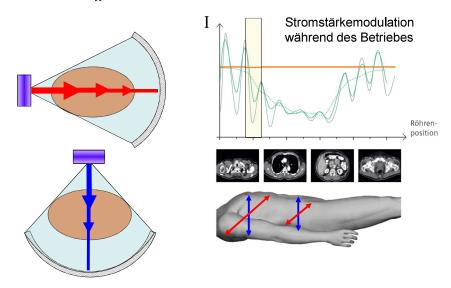
### Dosisverteilung



#### Organsensitive Dosismodulation



Dosis bei Brust und Augen wird reduziert


Dosisverteilung: ohne



mit

helle Farbe: hohe Dosis

### "Low Dose" Methoden



#### Weitere Literatur

- Siemens: Bildgebende Systeme für medizinische Diagnostik (3. Ausgabe) Publicis MCD Verlag 1999
- G. N. Hounsfield: Computed Medical Imaging (Nobel Lecture 1979) http://nobelprize.org/nobel\_prizes/medicine/laureates/1979/hounsfield-lecture.pdf
- Földes Tamás CT vizsgálatok alapjai (előadásjegyzet) (Ungarisch) http://www.sci.u-szeged.hu/foldtan/CT SPCEKOLL/CT alap.pdf
- C. J. Garvey, R. Hanlon: Computed tomography in clinical practice BMJ (2002) 324 1077-1080
- H. D. Nagel: Multislice Technology http://www.multislice-
- ct.com/www/media/introduction/msct\_technology\_2004\_06\_01\_v02.pdf
- Hart & Wall, European Journal of Radiology (2004) 50 285-291.
- E. K. Fishman: Multidetector-row computed tomography to detect coronary artery disease: the importance of heart rate. Eur. Heart J. Suppl. (2005) Suppl.G pages: G4-G12
- Fletcher et. al.: Dual -Energy and Dual -Source CT: IsThere a Role in the Abdomen and Pelvis?Radiol Clin N Am 47 (2009) 41–57