# coding: UTF-8
library(BlandAltmanLeh) # for BA plots
knitr::opts_chunk$set(echo = TRUE, options(digits = 4), options(OutDec = ","))
# remove everything from the environment:
rm(list=ls())
setwd("F:/pendrivok/oktatos/oktatas_2020tavasz/nemet_stat/3")
Comparing 2 measurement: eg. blood pressure measured with Arm and Finger Device
BA <- read.csv("BA.csv", sep=";")
Create correlation
plot(BA$A~BA$B)
abline(lm(BA$A~BA$B))
Correlation coefficient
cor.test(BA$A,BA$B)
##
## Pearson's product-moment correlation
##
## data: BA$A and BA$B
## t = 58, df = 28, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0,9911 0,9980
## sample estimates:
## cor
## 0,9958
Regression
mod_lm <- lm(A~B, data = BA)
mod_lm
##
## Call:
## lm(formula = A ~ B, data = BA)
##
## Coefficients:
## (Intercept) B
## -8,388 0,952
summary(mod_lm)
##
## Call:
## lm(formula = A ~ B, data = BA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53,38 -12,99 -1,81 8,77 94,45
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8,3877 8,6056 -0,97 0,34
## B 0,9520 0,0165 57,56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
##
## Residual standard error: 31,1 on 28 degrees of freedom
## Multiple R-squared: 0,992, Adjusted R-squared: 0,991
## F-statistic: 3,31e+03 on 1 and 28 DF, p-value: <2e-16
confint(mod_lm)
## 2,5 % 97,5 %
## (Intercept) -26,0155 9,2401
## B 0,9181 0,9859
Opinion?
summary(BA)
## A B X X.1 X.2
## Min. : 1,0 Min. : 8,0 Mode:logical Mode:logical Mode:logical
## 1st Qu.: 62,5 1st Qu.: 63,5 NA's:30 NA's:30 NA's:30
## Median : 275,0 Median : 297,5
## Mean : 364,2 Mean : 391,4
## 3rd Qu.: 637,5 3rd Qu.: 715,5
## Max. :1000,0 Max. :1001,0
## X.3
## Mode:logical
## NA's:30
##
##
##
##
t.test(BA$A,BA$B)
##
## Welch Two Sample t-test
##
## data: BA$A and BA$B
## t = -0,31, df = 58, p-value = 0,8
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -203,5 149,2
## sample estimates:
## mean of x mean of y
## 364,2 391,4
BA plot (req. BlandAltmanLeh)
bland.altman.plot(BA$A,BA$B, conf.int = 0.95)
## NULL