Medizinische Biophysik 30.04.2020

Transportprozesse 5

V. Verallgemeinerung der Transportgesetze

Extensive und intensive Größen, 0. Hauptsatz der Thermodynamik, onsagersche Beziehung,

2. Hauptsatz der Thermodynamik


VI. Energetische Beziehungen (Thermodynamik)

- 1. Nomenklatur
- 2. Energietausch (Arbeit) in den einzelnen Wechselwirkungen
- 3. Innere Energie (E)
- 4. Erster (1.) Hauptsatz der Thermodynamik
- 5. Entropie (S) phenomenologische Definition
- 6. Zweiter (2.) Hauptsatz der Thermodynamik
- 7. Entropie (S) statistische Definition

V. Verallgemeinerung der Transportgesetze

	Was "strömt"?	Stärke?	Was treibt die "Strömung"?		Zusammenhang?		
Volumen- transport	V	$J_V = \frac{\Delta V}{A \cdot \Delta t}$	p	$-rac{\Delta p}{\Delta l}$	$J_V = -\frac{R^2}{8\eta} \frac{\Delta p}{\Delta I}$		
Stoff- transport	ν	$J_{\nu} = \frac{\Delta \nu}{A \cdot \Delta t}$	c*	$-\frac{\Delta c}{\Delta x}$	$J_{V} = -D\frac{\Delta c}{\Delta x}$		
Ladungs- transport	q	$J_q = \frac{\Delta q}{A \cdot \Delta t}$	φ	$-rac{arDeta arphi}{arDeta l}$	$J_q = -\sigma \frac{\varDelta \varphi}{\varDelta l}$		
Energie- transport	Е	$J_E = \frac{\Delta E}{A \cdot \Delta t}$	T	$-\frac{\Delta T}{\Delta x}$	$J_E = -\lambda \frac{\Delta T}{\Delta x}$		
allgemein	$x_{\rm ext}$	$J = \frac{\Delta x_{\text{ext}}}{A \cdot \Delta t}$	$y_{\rm int}$	$X = -\frac{\Delta y_{\text{int}}}{\Delta x}$	J = LX		
	extensive Gr.	e Strom- dichte	intensive Gr.	termo- dynamische Kraft	onsagersche Beziehung		
	* Im allgemeinen Fall //						

^{*} Im allgemeinen Fall μ

Extensive Größe: o

additiv

o Im Gleichgewicht proportional zur Ausbreitung des Systems

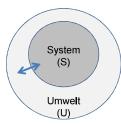
o In Transportprozessen: die transportierte Größe

Intensive Größe: o nicht-additiv

o Im Gleichgewicht überall gleich in dem System

o In Transportprozessen: die sich ausgleichende Größe

Gleichgewicht: es gibt keine Transportprozesse.

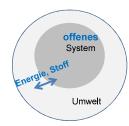

0. Hauptsatz der Thermodynamik: Gleichgewicht ⇔ homogene Verteilung der intensiven Größen

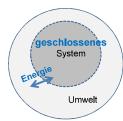
inhomogene Verteilung der intensiven Größen ⇒ Transportprozesse

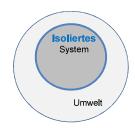
VI. Energetische Beziehungen (Thermodynamik)

1. Nomenklatur

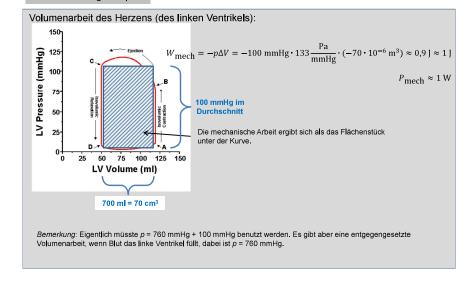
Transportprozess = Wechselwirkung (Ww.)

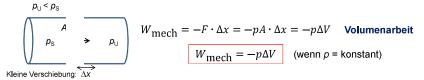

Transportierte (ausgetauschte) Größe

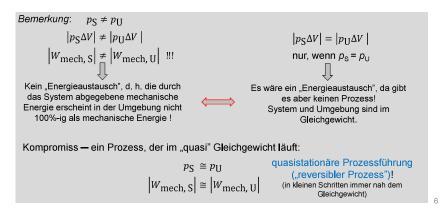

a + E


V + E

- Elektr. Ladungstransport = elektrische Ww.
- Volumentransport = mechanische Ww.
- Stofftransport = chemische Ww.
- o Energietransport = thermische Ww.

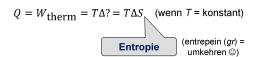





Ein Anwendungsbeispiel:

2. Energieaustausch (Arbeit) in den einzelnen Wechselwirkungen

a) Volumentransport = mechanische Ww.

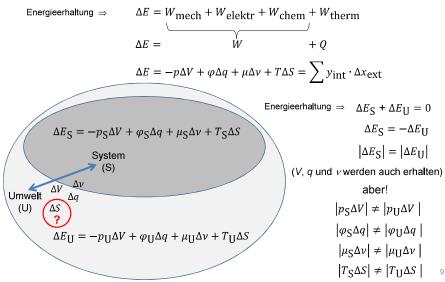

b) Elektr. Ladungstransport = elektrische Ww: $W_{\rm elektr} = \varphi \Delta q$ (wenn φ = konstant)

$$\left. \begin{array}{l} w_{\rm mech} = -p\Delta V \\ w_{\rm elektr} = \varphi \Delta q \end{array} \right\} \ {\rm Verallgemeinerung:} \ W = y_{\rm int} \cdot \Delta x_{\rm ext} \label{eq:wmech}$$

c) Stofftransport = chemische Ww: $W_{\rm chem} = \mu \Delta v$ (wenn μ = konstant)

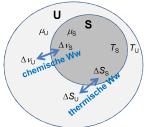
Das chemische Potenzial zeigt also um wieviel Joule die Energie des Systems zunimmt, wenn die Stoffmenge im System um 1 mol erhöht wird.

d) Energietransport = thermische Ww:



Rudolf Julius Emmanuel Clausius (1822-1888) Physiker

7


3. Innere Energie (*E*): Summe aller kinetischen und potenziellen Energien innerhalb des Systems

4. Erster (1.) Hauptsatz der Thermodynamik

6. Zweiter (2.) Hauptsatz der Thermodynamik: In einem isolierten System verlaufen spontane Prozesse nur in der Richtung des Ausgleichs der intensiven Größen.

Beispiel: Konzentrationsausgleich (Ausgleich des chemischen Potenzials) zwischen System (S) und Umwelt (U)

Voraussetzungen:

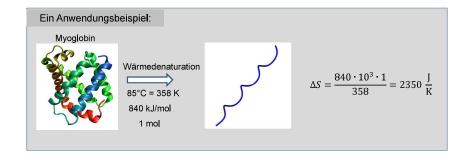
- stabile Wand ⇒ keine mechanische Ww
- elektrische Ww wird vernachlässigt
- thermisches Gleichgewicht: $T_S = T_U = T$

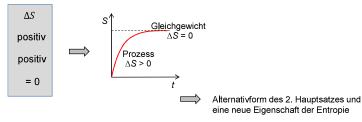
	$\Delta E_{S} = -\Delta E_{U} \rightarrow \Delta E_{S} + \Delta E_{U} = 0$
	$\Delta v_{\rm S} = -\Delta v_{\rm U}$
	$\Delta E_{S} = \mu_{S} \cdot \Delta \nu_{S} + T \cdot \Delta S_{S} \rightarrow \Delta S_{S} = \frac{\Delta E_{S} - \mu_{S} \cdot \Delta \nu_{S}}{T}$
	$\Delta E_{\mathrm{U}} = \mu_{\mathrm{U}} \cdot \Delta \nu_{\mathrm{U}} + T \cdot \Delta S_{\mathrm{U}} \rightarrow \Delta S_{\mathrm{U}} = \frac{\Delta E_{\mathrm{U}} - \mu_{\mathrm{U}} \cdot \Delta \nu_{\mathrm{U}}}{T}$
	$\Delta S = \Delta S_{S} + \Delta S_{U} = \frac{\Delta E_{S} - \mu_{S} \cdot \Delta \nu_{S}}{T} + \frac{\Delta E_{U} - \mu_{U} \cdot \Delta \nu_{U}}{T} = \frac{\Delta S_{S} + \Delta S_{U}}{T} = $
v	$=\frac{\Delta v_{\rm S}}{m} \cdot (\mu_{\rm H} - \mu_{\rm S})$

11

		$(\mu_{\rm U}-\mu_{\rm S})$	$\frac{\Delta v_{\rm S}}{T}$	ΔS
	$\mu_{\mathrm{U}} < \mu_{\mathrm{S}}$	negativ	negativ	positiv
Alle Möglichkeiten: -	$\mu_{\text{U}} > \mu_{\text{S}}$	positiv	positiv	positiv
	$\mu_{\mathrm{U}} = \mu_{\mathrm{S}}$	= 0	= 0	= 0

5. Entropie (S) - phenomenologische Definition:


bei reversibler Prozessführung:


 $|Q_{\text{rev,System}}| = |Q_{\text{rev,Umwelt}}|$

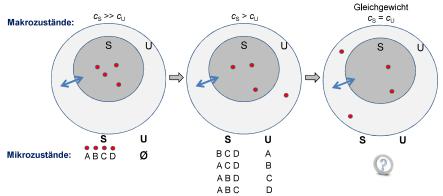
$$Q = W_{\text{therm}} = T\Delta S \qquad \Longrightarrow \qquad \Delta S = \frac{Q_{\text{rev}}}{T} \quad \left(\frac{J}{K}\right)$$

$$(wenn T = konstant)$$

$$\Delta S = c \cdot m \cdot \ln \frac{T_2}{T_1} \qquad \text{(wenn } T \neq \text{konstant)}$$

Jetzt wird das System neu definiert: das frühere System + Umwelt. Das ist schon isoliert.

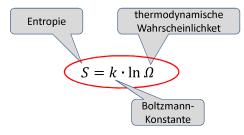
Zweiter (2.) Hauptsatz der Thermodynamik: In einem isolierten System verlaufen spontane Prozesse nur in die Richtung der Entropiezunahme.


Entropie: Sie ist keine Erhaltungsgröße, sie wird in Ausgleichsprozessen produziert.

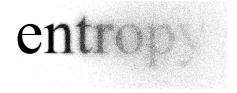
10

7. Entropie (S) – statistische Definition:

Das gleiche Beispiel wie früher: Konzentrationsausgleich

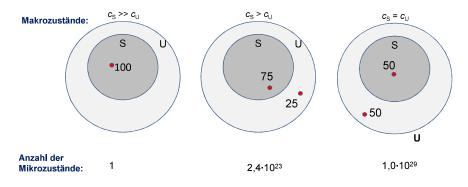

Thermodynamische Wahrscheinlichkeit (Q): Anzahl der zu einem Makrozustand gehörenden Mikrozustände

$$\Omega = 1$$
 4 6


In dieser Richtung nehmen zu: ✓ Ω

- u. **∨ ⊈** ✓ Entropie
 - ✓ "Unordnung"
 - ✓ Unsicherheit und Informationsgehalt eines Experimentes

Unsicherheit und Informationsgehalt eines Experim


Die Entropie is ein Maß für die "Unordnung".

Ludwig Eduard Boltzmann (1844-1906) Physiker

15

Ω =

In dieser Richtung nehmen zu: ✓ Ω

- ✓ Entropie
- \checkmark "Unordnung"
- ✓ Unsicherheit und Informationsgehalt eines Experimentes

(Anzahl der Mikrozustände in falle von 500:500 Teilchen =2,7·10²⁹⁹)

14