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Probability of Events I.

Axioms on probability of events (Kolmogorov):
1.0<sP(A) <1

2. P(sure) = 1 (The patient wi

sooner or later)

P(impossible) =0 (I'm 310 cm tall)
3. Mutually exclusive events (i.e. P(AandB)=0)
P(AorB)=P(A)+P(B)
(probability of being pregnant or male)

And a theorem:

+4. Independent events: P(AandB)=P(A)*P(B)
(probability that our first patient is male and the second one is
female)

We finished the last lecture with the discussion of
phenomena of probability.

To describe the probability of events we have axioms. Now
we show the Kolmogorov axioms. (In a simplified way.)

1. The probability of an event is between 0 and 1.

2. The probability of a sure event (the patient will die
sooner or later — we know that life is a sexually transmitted
lethal disease®) is 1. The probability of an impossible
eventis 0 (I'm 310 cm tall).

3. The probability of A or B events occur if A and B are
mutually exclusive (they could not happen in the same
time) events is the sum of the probability of A and the
probability of B events. (The probability that being pregnant
or male is the probability that being pregnant + the
probability that being male.)

A theorem based on the axioms:

+4. The probability of A and B events occur if A and B are
independent events (the occurance of an event has no effect on
the occurance of the another) is the multiplication of the
probability of A and the probability of B.

(Probability that our first patient is male and the second one is female is the
probability that our first patient is male * the probability that our second patient is
female.)

These mentioned statements are true from other way round. For
example if P(A)*(P(B)=P(AandB) then A and B are independent
events.

Human thinking and probability...

Linda is 31 years old, single, outspoken, and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations.

Which is more probable?
a) Linda is a teacher in a secondary school
b) Linda works in bookstore and participates in yoga courses
c) Linda is a member of the league of women voters
d) Linda is a bank teller.
e) Linda is an insurance agent
f) Linda is a bank teller and is active in the feminist movement.

The last example we dicussed in the previous lecture was
about Linda. Here I'd like to highlight two statement: d and
f. I hope after the previous slide everybody found out that
co-occurrence is less probable than occurrence of a given
event. The intersection of sets is always equal or smaller
than the sets. So it is less probable that Linda is a bank
teller and active feminist at the same time than she is a
bank teller.




Probability of Events II.

Conditional events calculation:
general form: P(A|B)=P(AandB)/P(B)
Special cases:
1. Independent events:
Probability that our second patient is male
if the first one is female

P(A|B)=P(AandB)/P(B)
P(A|B)=P(A)*P(B)/P(B)
P(A|B)=P(A)

Probability that our second patient is male
if the first one is female = Probability that our second patient is male

There is an other important calculation that you have to
know on conditional events. | showed here a simplified
form of Bayes’ law. The general form of the ,multiplication
role” is P(A|B)=P(AandB)/P(B). First examine 2 special
case.

Case1: check the conditional probability in case of

independent event. E.g. probability that our first patient is male if
the second one is female. As we see the result the independent condition
has no effect on the probability of the event; e.g. probability that our
second patient is male if the first one is female = probability that our
second patient is male.

We have the same with tossing a coin, rolling a die, etc.:

the previous results has no effect to the next one.

Probability of Events Il.

Il. event A is a subset of event B
Probability that a patient has a flu
if suffering from a viral infection

P(A|B)=P(AandB)/P(8)
P(A|B)=P(A)/P(B)

Calculation:

The probability that a patient coming to our office has viral infection
is 8% =P(B)

The probability of occurrence of flu infections at our office is
2% = P(A)

The probability that a patient suffering from a viral infection has
actually fluis: P(A|B)=2% /8 % = 25%.

Case2: event Ais a subset of event B (all Ais a B, but not all B is A).

An example:

The probability that a patient coming to our office has viral infection is 8%
=P(B) —that is the probability of the condition.

The probability of occurrence of flu infections at our office — that is the
probability of our event in the given sample. P(A) = 2%

The probability that a patient suffering from a viral infection has actually flu
- P(AB) —is 25%.

Repetition:Population and Sample
(Problematics of inferential statistics)

Population sample

The size of the population usually does not allow Therefore, only a subset of the population is examined.
the examination of all of its elements. That is what we call 2 sample.
UNCERTAINTY! I [
P an.
( and E] We carry out measurements on the
Charactesistics of the sample A s3mple clements, then this data set
can be used to draw conclusions

(whichis also called sample)

on the population. will be characterized by graphs and numbers

As we mentioned before, statistics examines random mass
phenomena. This means that during examination of a
phenomenon many, if not infinitely many measurements
would be possible. The set containing the outcomes of all
these theoretically possible measurements is called
population. Theoretically, the complete understanding of a
variable would require the execution of all the possible
measurement, but of course it is not possible.

Consequently, we only observe a subset of the population,
which is called sample. The most evident way of
generating this subset is random selection.

We carry out measurements on the sample, the set of
measurement results is also called sample. (That is: in
less precise way the sample may be a group of students
[individuals, objects] of the university as a population. In
more precise way, the population is the height of all people
at the university, the sample is the set of height values for

a group that was actually measured.)

The sample might be characterized graphically or numerically as
we learned in the last lecture, then the properties learned that
way may be extrapolated to the population. E.qg. if 25% of people
in a group have blood type “A”, we may expect the same from the
whole population. Since the sample is chosen randomly, it will not
necessary represent the population, the frequency of occurrence
of different values within the population perfectly. As a result,
every conclusion drawn from a sample carries a burden of
uncertainty.

What is the quantity of the uncertainty? How to define?

We are using 2 term for it: probability (P) and error E.




Estimation
Population Cmmmmm sample
Real value Estimation Estimate
Probability Relative frequency
Expected value (mean of population) Mean of the sample
Theoretical variance (Empirical) sample variance
Difference of 2 expected value Difference between 2
sample mean

So in the inferencial statistics we make estimates and
analyze them.

For example, the probability of a given variable outcome in
a population is estimated by the relative frequency of the
sample. The expected value of the variable is estimated by
the mean of the sample, and the variance is estimated by
the sample (so called empirical) variance. The difference
between the averages of two populations can be estimated
by the difference between the sample means (eg whether
drug is different - different means).

Error

Population _ Sample

®  Real value Estimation e Estimates
(estimand)

/Error

Imagine more random
samples —more estimates

Expected value, standard deviation, difference in the
expected value of two populations - all measures of
efficacy are estimated parameters. The question is how big
a mistake can we make? Imagine estimating a given true
value with multiple samples - the samples come from the
population by random sampling. The difference between
the real value and the estimate is the error.

Error — 2 dimension

1. Variability of estimates

2. Difference between the real
value and the ,center” of the
estimates

,Average of differencies” (bias)
Systemicerror

,Variability” (standard deviation);
Random error

The error ,has 2 factors™: random error and systematic
error. The random error is the variance of the estimates,
while the systematic error is characterized by the
difference between the ,center" of the estimates and the
estimated value.

Error — 2 dimension

Good estimation, if:

Unbiased:

the expected value of the estimates
is equal with the estimand

Effective:
the variability is small

(Konsistent:

the variability of estimates
decreases with increased sample
size)

,Variability” (standard deviation);
Random error

,Average of differencies” (bias)
Systemicerror

The estimates is good, if:
1. Unbiased

2. Effective

3. Consistent

(+ 1 not mentioned...)




Confidenc intervals

But we have only 1 estimate and we don’t know the real value!
— Could we measure the error?

YES, the random error (sampling error) could be estimated based on the
sample! It is called the standard error of the estimate.

HOW?

We have only 1 sample, therefore 1 estimate and we don't
know the real value — could we measure the error in this
case?

YES! But only the random part! We can estimate random
error based on the sample.

Confidence intervals

But we have only 1 estimate and we don’t know the real value!

— Could we measure the error?
The variability (random error, sampling error) could be estimated based on
the sample!

Example:

The standard error of the mean (shortly standard error, SEM)

Reminder: CLT: Central limit theorem (on sampling). for given
conditions, sampling with large sample size (n) the distribution of
the sample means is normal with:

varonxmal)

n

Vag .=

Let’'s show an example based on the mean (estimate of
expected value).
Reminder: central limit theorem (CLT)

Confidence intervals

1. Therefore the standard error of the mean (the variability of
estimating the mean): is the square root of the nth part of the
sample variance.

2. We can construct a range, that contains the mean with a given
,probability”: called confidence interval of the mean.

the given probability: called confidence level

In the case of the mean (because of normal estimation — see CLT) eg.:
The limits of the 95% confidence interval of the mean are:

~ X+2*SEM

We can construct confidence intervals for other estimats too!
It shows the value of the estimate, its error and its confidence interval

Based on the CLT we have 2 conclusion:

1. the standard error of the mean (the variability of
estimating the mean): is the square root of the nth part
of the sample variance.

2. We can construct a range, that contains the mean
with a given ,probability”: called confidence interval of
the mean. The given probability: called confidence
level.

For the mean eg. : The limits of the 95% confidence
interval of the mean are mean+-2*SEM.

We can construct confidence intervals for other
estimats too! (Nearly for all estimates).

It shows the value of the estimate, its error and its
confidence interval.

Hipothesis tests
Sampling (,,random”) error with an other method

Aim of hypothesis tests: Statistical answer on YES/NO question

HOW to prove a statement?
Direct proof: prove for all cases that the statement is true.
eg: sum of 1,2..n : (n+1)*(n/2) — proving with induction

Indirect proof: assume the opposite statement and | prove that is false.

One main tool in statistics to make decisions with a given
error probability is hypothesis tests.

In this chapter | gave detailed description in the slides,
therefore | comment it shortly.

In hypothesis tests we would like to give an answer for a
YES/NO question. An answer is a statement — but how to
prove a statement?

In math we have 2 possibilities:

Direct/indirect prooving.




Indirect proof

We have a box containing 100 marbles. Each of them are either red or white.

Case #1: hypothesis (H): all of them are

Case #3: hypothesis (H): 50 are white and 50

Indirect proof

We have a box containing 100 marbles. Each of them are either red or white.

Case #1: hypothesis (H): all of them are white.

Verification does not work

white. are red.
Experiment: We randomly take a marble out  Experiment: We randomly take a marble out
of the box. of the box and put it back; we do this 5 times.
Our observation: It is red. Our observation: All of them are red.
C ion: The p ility of our C ion: Now we are not sure what to do:
observation given our hypothesisis0: Our  The probability of our observation given our
hypothesis is for 100% sure wrong. hypothesisis 0.55 = 0.03125: low but not that

unlikely...

Case #2: hypothesis (H): 99 are whiteand ~ Case #4: hypothesis (H): all of them are red.

oneis red. Experiment: We randomly take a marble out
Experiment: We randomly take a marble out ~ of the boxand put it back; we do this 5 times.
of the box and put it back; we do this 5 times. Our observation: All of them are red.
Our observation: All of them are red. Conclusion: The probability of our
Conclusion: Our hypothesis is for almost observation given our hypothesisis 1° = 1.
100% sure wrong: The probability of our Are we sure what to do now?

observation given our hypothesis is 0.01° =
107: practicallyimpossible.

In hypothesis tests we would like to use indirect proving,
therefore execute the next theoretical experiments.

Experiment: We randomly take a marble out
of the box.
Our observation: It is red.

Conclusion: The probability of our observation X
given our hypothesisis 0: Our hypothesisis for

100% sure wrong.

Case #4: hypothesis (H): all of them are red.
Impossible event Experiment: We randomly take a marble out of the
box and put it back; we do this 5 times.
Our observation: All of them are red.

The hypothesisis false Conclusion: The probability of our observation
given our hypothesis is 1°= 1. Are we sure what to
Falsification works do now?

Falsification: refutation of the statement
Verification: supporting the statement

Indirect proof

What about #2 and #3?
Mathematical Logic:
We have a hypothesis (H).
If His true, E event cannot occur.
E occurs.
So His not true.
As we saw it before, a hypothesis can only be rejected

Statistical Logic:
We have a hypothesis (H).
If His true, F event is very unlikely to occur.
F occurs.
So we reject H. But we are not 100% sure if H is not true.
In this case a hypothesis cannot even be rejected with 100% certainty.
WE HAVE TO ESTIMATE THIS PROBABILITY

In math the falsification is clear — but in stat it works with a
given probability.

What kind of questions can we test?

Y/N ...must be ayes/no (a.k.a. dich or polar) i 5W1H
- Is the 5-years survival rate (i.e. - What is the 5-years survival rate
probability) for myeloma 50%? for myeloma?
- Does the total blood cholesterol - What is the expected value of

level of Cushing’s syndrome patients ~ total cholesterol level in
differ from the general 200 mg/dL Cushing’s syndrome patients? X
population mean?
...must refer to a set of observations, not to individual cases.
(And the question is aimed at a population, not a sample.)
- Isthe 5-years survival rate ./ - Will this myeloma patient
for myeloma 50%? survive for 5 years? X

...must have at least one unambiguous answer.

- Is the 5-years survival - Is the 5-years survival rate
rate for myeloma less than 50%?
for myeloma 50%? v/ X




What kind of answers can we test?
We have two answers for our question:

The null hypothesis (Ho) The alternative hypothesis (H,)
- Unambiguous: can berealized inonly - Typically can be realized in more than one
one way. It contains some form of =. way.
The 5-years survival rate The 5-years survival rate
for myeloma is 50%. for myeloma is not 50%.

(can be a little more, a lot less etc.)

- Represents the current well- - Represent a new statement challenging
established, generally accepted scientific the current scientific consensus,
knowledge, The total blood cholesterol level of
The total blood cholesterol level of Cushing’s syndrome patients differs from
Cushing’s syndrome patients is same as the population mean
the population mean or a set of all the not-so-trivial answers
or something that is the most trivial with needing more or special assumptions.
the least assumptions (Occam’s razor). The probability of landing on heads in a
The probability of landing on heads in a coin tossing experiment is other than 50%.
coin tossing experiment is 50%. - Itis typically complementary to H (i.e., its
- Itis not necessarily the negative negation).

answer to the question. Hy=not Hy

Sampling (,random”) error

Aim of hypothesis tests: Statistical answer on YES/NO question

Starting point: create a specific statistical question and answers:
Hg: null hypothesis — ,random” error only
H, (or Hy): alternative hypothesis — not Hy

Decision is based on: role of ,randomness” if H, true (sampling error)
A sample is that could contradict H,

So we have a question and the hyotheses.

The HO is the more important: if HO is true in the reality we
could see something else in the sample because of the
sampling error (we have a sample we did not measure
everybody).

Our aim is to answer the question with a decision:
accepting or rejecting the HO.

Sampling (,random”) error

Aim of hypothesis tests: Statistical answer on YES/NO question

Starting point: create a specific statistical question and answers:
Ho: null hypothesis — ,random” error only
H, (or H,): alternative hypothesis — not H,

Decision is based on: role of ,randomness” if H, true (sampling error)
A sample is that could contradict H,

In population (in reality) the null hypothesis is:

Accepting Error (type ll) (B)
null
hypothesis: Rejecting Good decllsltér'\ (power)
1

Let’s look a table on HO what could be the results of our
decision. In reality (that we don’t know) we have to options:
the HO is true or false. Or decision could be to accept or to
reject the HO.

If we accept the true HO or we reject the false HO we make
a good decision. The latter one called power: it gives the
probability to find (reject HO) if the HO is false.

If we reject the true HO we make a wrong decision called
type 1. error. This probability — rejecting HO if HO is true —
symbilized by alfa.

If we accept the false HO we make a wrong decision called
type II. error. This probability — accepting HO if HO is false —
symbilized by beta.

An example - first steps

Situation: We play a board game with dice — we do not win...
This is a ,wrong” dice?

What is the question??!! (and what is it about):
All of the sides has the same probability? (for this dice)
The probability of six-throw is different from 1/6, even bigger?
— let’s use this question

Null hipothesis ??11:
The probability of rolling 6 is 1/6 or less — hmm (multiple hypothesis)
Let’s use the worst according to alternative hypothesis
(since if only one element of the multiple hypothesis can "conform" to
the null hypothesis, there is no evidence of rejection in the full range
of hypothesis):
Hy: The probability of rolling 6 is 1/6.
H,: greater than 1/6

Let’'s see an example for a hypothesis test.




An example — next steps

What is the question : The probability of six-throw is different from 1/6, even
bigger?
Null hypothesis: Hy: The probability of rolling 6 is 1/6.

How much evidence do we need for saying it is differ?
— Significance level??!!:
Given by authority... Used in the literature--- STARTING VALUE, BUT
smaller/larger, more/less frequent side effects?, cheaper/ more
expensive?...
here: we play this game every weekend, it's not expensive to change the die
—let’s use 10% instead of 5% (smaller evidence enough to reject Hy)

Collecting evidence — the sample ??!! (how, how much... ask your statistician):
results: 6 times 6 out of 24 rollings
| really answer the question | have created?
Do | need to modify the question? (eg. the population of interest)

Sginificance level: the limit where we accept or reject HO.

An example — additional steps

What is the question : The probability of six-throw is different from 1/6, even
bigger?

Null hypothesis: Hy: The probability of rolling 6 is 1/6..

Significance level:10%

Sample: 6 times 6 out of 24 rollings.

Is the difference important at all?— relevant ??!!:
6 times 6 out of 24 rollings, it is 6/24 = 1/4 probability that 1,5 times
higher than 1/6 — YES it is

How much evidence — p-value ??!1:
How to calculate it?, (unbiased, effective, consistent...)
Important aspects: the question, type of variables (measuring scale),
measurement conditions
We need for calculation:
Null distribution = if null hypothesis is true, what is the probability of all
theoretical samples we could have?
The ,position” of our sample in this distribution:
test statistics (or statistics, eg: frequency, probability , t-value , p-value...)

Relevant: clinically important effect.

Calculation in the ,,background”

Using binomial test!

0,25
Null distribution: distribution if H, is true:
02 Number of 6 rolls out of 24 rollings
6x or higher numbei 6, IF Hq IS
515 TRUE - p-value
Z
S8 Generally: the probability of having a
90,1 corresponding (to the sample) or more
o extreme value if the null hypothesis is
0,05 true
0
0123456 7 8 9101311213 1415 16 17 18 19 20 21 22 23 24
Number of 6 rolls

An example - last steps

What is the question : The probability of six-throw is different from 1/6, even
bigger?

Null hypothesis: Hy: The probability of rolling 6 is 1/6..
Significance level:10%

Sample: 6 times 6 out of 24 rollings.

Is the difference important at all?— relevant : 1/4 probability, that 1,5 times
higher than 1/6 — YES it is

How much evidence? - p-value: 0,1995

Decision: there is not enough evidence for reject H,— accept H,

In population (in reality) the null hypothesisis:

False
. Accepting Error (type ll) (B)
Decisionon | (Not rejecting) (false negative result)

null

hypothesis: Rejecting Good decision (power)




One sample Student t-test

What I’'m curious about
Expected value of the sample is equal with a known population
mean
Type of variable
1 numerical and continuous
Assumption
Independent observations
distribution of means is normal:
normally distributed sample or large sample size (CLT)
Notes: Calculation:
X-u
s/
Do NOT test normality with other hypothesis test (it increases
Type I. error, ,multiplicity”)! Use previous knowledge on the
variable and make graphs.

t=

Let’s look a few hypothesis tests that you will learn in
practices. | highlight here which hypothesis test could be
used for a given problem, given variable (measuring scale),
and what condition ave to be fullfilled.

(CLT: central limit theorem)

Paired Student t-test

What I’'m curious about
Two expected values in two groups are equals — in paired groups

Type of variable

1 numerical and continuous, 1 binary (,groups”)
Assumptions

Independent observations in the groups, paired groups

the distribution of the difference of means is normal

normally distributed differences or large sample size

Notes:

paired test usually has higher power

suitable to compare other location parameters (quantiles)

difference of the means = mean of the differences

Matematically this is the same as the one sample t-test, if
we use the difference of paire values as a dataset.

2 sample Student t-test

What I’'m curious about
Two expected values in two groups are equals
Type of variable
1 numerical and continuous, 1 binary (,groups”)
Assumptions
Independent observations between and within groups
distribution of means is normal in each group:
distribution is normal in each group or large sample size
distribution of standard deviations are the same
Notes:
suitable to compare other location parameters (quantiles)
if we don’t know the variances do not test (multiplicity) — use
Welch test instead!

Welch test

What I’'m curious about
Two expected values in two groups are equals
Type of variable
1 numerical and continuous, 1 binary (,.groups”)
Assumptions
Independent observations between and within groups
distribution of means is normal in each group:
distribution is normal in each group or large sample size
Notes:
suitable to compare other location parameters (quantiles)
not sensitive for different variances (robust for variance
differences)




Chi-square test for independence

What I’'m curious about
Two variables are depends on each other
Type of variable
2 categorical variable
Assumptions
Independent observations
None of the ,expected” frequencies smaller than 1 and
maximum 20% smaller than 5.

»Correlation” t-test (Pearson linear regression)

What I’'m curious about
Two variables are (linearly) depends on each other
Type of variable
2 numerical variable (X and Y)
Assumptions
Independent observations for pairs
linear relation assumed
x values measured with no error
y-s have a normal distribution at each x
y-s have same variance at each x
Notes
2 estimates: slope and intercept, slope is important and tested

Relevant, but not significant...
Reasons:
small power:
small sample size (limitation: money, ethical issues)*
large variability
less powerfull statistical test

we could not measure it accurately
violated assumptions for the test Plan ahead!!

we were unlucky (sampling error)

other errors

-*Ask yor statisticians...
(® eg: https://www.youtube.com/watch?v=PbODigCZqL8 )

It is a common problem that we get a relevant (clinically
important), but not significant (not rejected HO) result — that
means no effect? or...

+We used too small sample size

+ the variability of the variables are too large

+ wrong, or wrongly used hytpothesis test was perfromed
+ low measuring scale

+ we were unlucky

+ ...

To avoid this problems it is very important to plan the
experiment before perform data collection.

A typical big question is the sample size.
Sample size video:
https://www.youtube.com/watch?v=Hz1fyhVOjr4

Other errors

Effect size based on the sample (the estimate)

-~ N\

True effect size (the estimand) Errors

Bias:
Selection bias
Information bias
confounding bias

Sampling (random) error

Until now, we talked about the error because sampling. But
there are other source of errors called bias (systemic
error). We usually classify them into 3 category:
Confounding

Selection bias

Information bias




Confounding bias

Outcome

Risk facts
18k factor (disease,endpoint)

N

confounder

Shortly, confounding bias occur when the effect on the
outcome variable is described, interpreted by a variable
(here called risk factor), but in reality the effect caused
(modified) by an other variable (a confounder).

Confounding bias

Outcome

Risk factor (disease,endpoint)
AN
confounder
height ~ ———— Srl(c,tc,f)el:i
NS
gender

Most common confounders: gender, age — always think about them!

Eg. We found that higher people has slleping problem with
higher probability and therefore we interpret that saying
that higher body high increase the sleeping problems. But
in reality the reason is not the high: the reason is the
gender — men has more probable sleeping problem. If we
examine men and women separately we could not detect
the hight effect on sleeping problem.

(A variable could be a confounde if it has ,effect” both on
the risk factor and the outcome)

Selection bias, Information bias

Selection bias:
There is a difference between the selected and not selected individuals, or
difference between assignment to groups (erroneous selection with respect
to an outcome influencing parameter)
tipical: age, gender different in the groups
different population
different follow-up time

Information bias:
erroneous data collection about or from subjects (which affects the
outcome)
tipical: recall bias
more carefull monitoring for diseased, young

Selection bias examples:

AGE: Knowing that gender has an effect on sleeping
problems, the proportion of women in a ,new drug group”is
different than in the ,placebo group”.

LOSS OF FOLLOW UP: — we know that AIDS is more
frequent in i.v. drug users and homosexuals: those who
has AIDS will more often "quit" the follow-up, than those
who do not get AIDS, as well as IDU users more often
,disappear”, than homosexuals

DIFFERENT POPULATION: Fracture in Women and
Nutrition Relationships: We choose bone trauma from a
trauma class, control of the hospital's internal medicine
(But there are other more frequent ilinesses in the internal
medicine , eg diabetes is more common that has an effect
on fracture !l)

Information bias examples:
RECALL BIAS: Parents of children diagnosed with cancer
may be more likely to recall infections earlier in the child’s

life than parents of children without cancer.

Good source:
Catalogue of Bias Collaboration, Spencer EA, Brassey J, Mahtani
K., 2017. https://catalogofbias.org/




Test Questions

*  What does systestemic and random error means?

* What does unbiased estimation mean?

* What does effective estimation mean?

* What does consistent estimation mean?

* What does confidence interval mean?

* What is the aim of a hypotheisis test?

* Give the criteria of a good question in a hypotheisis test.
* Give the criteria of a good null hypothesis in a hypotheisis test.
*  What does significance level means?

* What does relevant mean?

* Define first type error.

* Define second type error.

* Define the p-value in a hypothesis tests.

* What does confounding bias mean?

*  What does selection and information bias mean?

The following questions may be answered using lecture material, consultation with
practice teacher, or your own investigation (on the library or the internet). These test
questions are examples for questions that may occur in the midterm and exam tests.




