
Lumineszenz und ihre Anwendungen

KAD 2020.10.20

Lichtquellen

Klassifizierung der Lumineszenz nach der Anregungsart

Thermolumineszenz, Flammenfärbung

Photolumineszenz

Photolumineszenz von Molekülen

Photolumineszenz: Fluoreszenz und Phosphoreszenz

Eigenschaften des Lichtes

Anwendungen

Labordiagnostik

Fluorimeter

Fluoreszenzspektroskopie

Untersuchung von biol. Makromolekülen

Biosensoren

Lumineszenz-Mikroskopie, Fluoreszenzmikroskopie

Lampen

Quecksilberdampflampen

Leuchtdioden

LASER (später)

Strahlungsdetektoren

Kathodenstrahlröhren, Monitoren

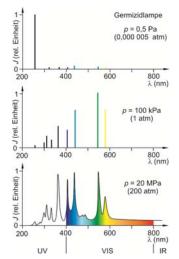
Zahnheilkunde

Lumineszenz: Lichtemissionüberschuss eines Körpers im Vergleich zu seiner Temperaturstrahlung. Angeregte Elektronen kehren zum Grundzustand zurück und emittieren Photonen.

Lichtquellen

ΔJ Δλ

6000 K (Sonne)


5000 K

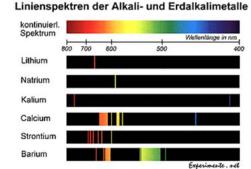
4000 K (Glühlampe)

400 800 λ Wellenlänge (nm)

UV VIS IR

Das kontinuierliche Spektrum der Temperaturstrahlung ist stark temperaturabhängig (Praktikumsbuch, 6. Lichtemission)

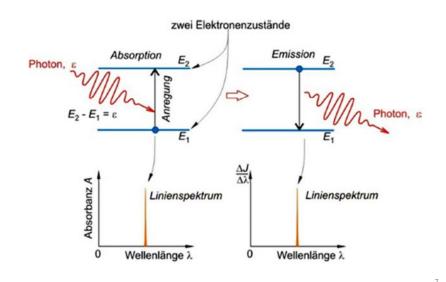
Spektren von Niederdruck-, Hochdruck- und Höchstdruck-Quecksilberdampflampen. Man beachte, dass die **Spektrallinien** mit zunehmendem Druck an Zahl zunehmen bzw. sich zu **Banden** verbreitern!

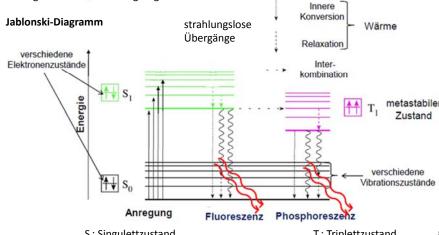

2

Klassifizierung der Lumineszenz nach der Anregungsart

3				•	_
Art der Anregung	Name (-lumineszenz)	Beispiel			
Licht	Photo-	Chinin-sulphat, Phosphor,	-		
Wärme	Thermo-	CaSO4(Dy)		CHECK	
Röntgenstrahlung	Röntgen-	NaI (TI)		1	h
radioaktive Strahlung	Radio-	Nal (TI)	'		
elektrisches Feld	Elektro-	Quecksilberdampfla mpen, Leuchtdioden			
Beschuss mit Elektronen	Kathodo-	Leuchtschicht einer Kathodenstrahlröhre		1	
mechanische Wirkung	Tribo-	bei Zuckerkristallen			
chemische Reaktion	Chemi-	Luminol zum Nachweis von Blut	ı	1	7 .
chemische Reaktion in lebenden Organismen	Bio-	Glühwürmchen, Oxidation von Luciferin im	_		X
		Leuchtkäfer			

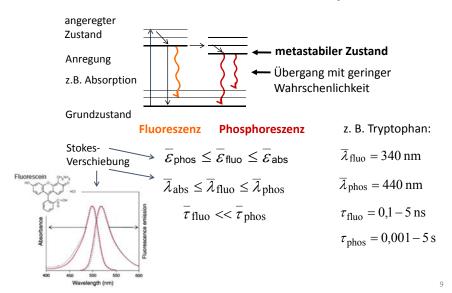
Thermolumineszenz. Flammenfärbung


Energieumwandlung kommt durch Valenzelektronen zustande, die durch die Wärmeenergie in einen angeregten Zustand gehoben werden und unter der Abgabe von Licht wieder zurückfallen.

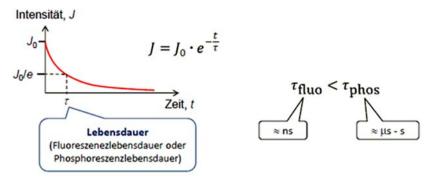

Photolumineszenz

Photolumineszenz von Molekülen

Energie: $E_{\text{Molekül}} = E_{\text{Elektron}} + E_{\text{Vibration}} (+ E_{\text{Rotation}})$


Kasha-Regel: das Elektron gelangt immer auf das niedrigste Vibrationsniveau des ersten angeregten Zustands und die Emission eines Photons stammt aus diesem niedrigsten elektronisch angeregten Zustand

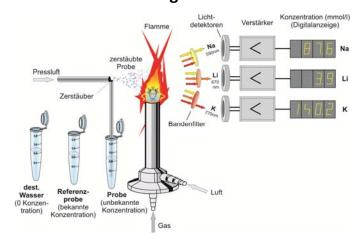
S_i: Singulettzustand


T_i: Triplettzustand

Photolumineszenz: Fluoreszenz und Phosphoreszenz

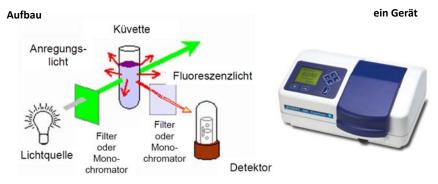
Eigenschaften des Lichtes

exponentielles Abklingen in der Zeit nach einer kurzzeitigen impulsförmigen Anregung

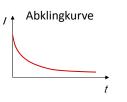


Quantenausbeute: das Verhältnis zwischen der Anzahl der emittierten Photonen und der Anzahl der absorbierten Photonen

$$Q_{\text{Fluoreszenz}} = \frac{n_{\text{Photonen,emittiert}}}{n_{\text{Photonen,absorbiert}}} \le 1$$

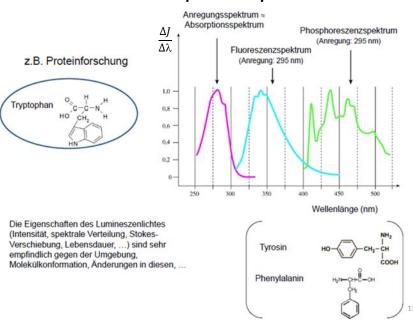

10

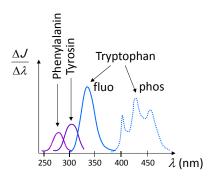
Anwendungen Labordiagnostik



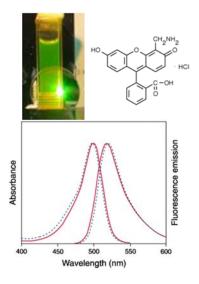
Konzentrationsbestimmung von Na, K, Li, ... mit Hilfe des Flammenphotometers

Fluorimeter

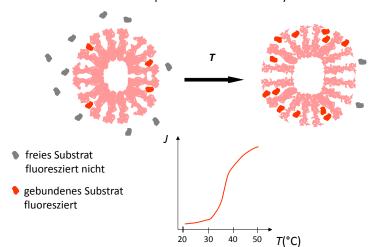




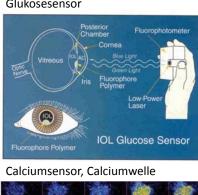
12


Fluoreszenzspektroskopie

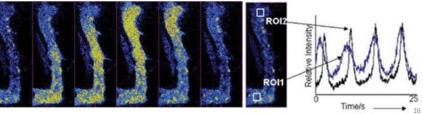
Beispiele:


Fluorescein

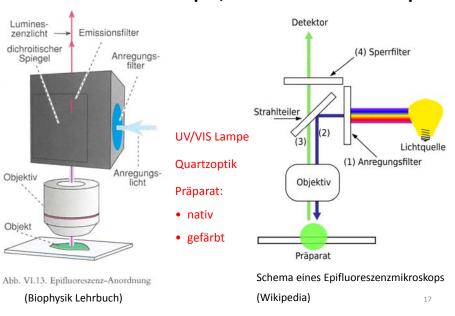
14

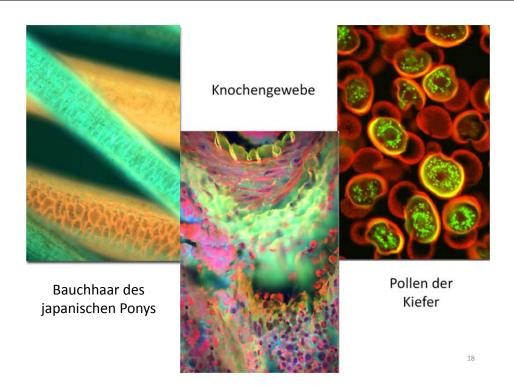

Untersuchung von biol. Makromolekülen (Proteine, DNA)

z.B. Chaperon-Aktivität von α -Crystallin


Biosensoren

Glukosesensor


Sauerstoffsensor

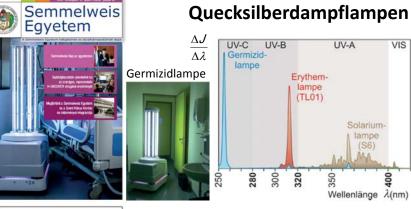


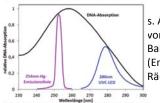
15

Lumineszenz-Mikroskopie, Fluoreszenzmikroskopie

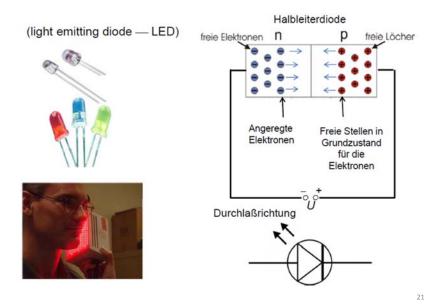
Lampen

Natriumlampe 590 nm

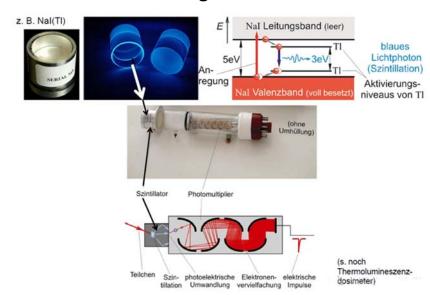



Blaulichttherapie von Neugeborengelbsucht

Quecksilberdampflampen

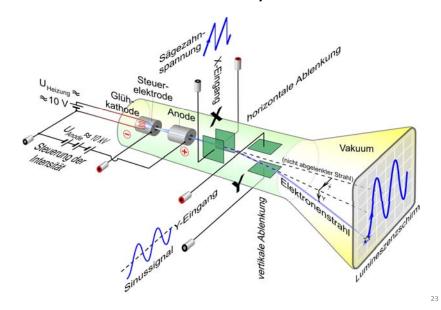


s. Absorptionsspektrum von DNA \Rightarrow Bakterizidwirkung (Entkeimung in OP-Räumen)

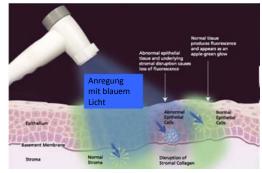


Quartzlampe, Solariumlampe

Leuchtdioden



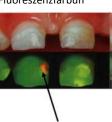
Strahlungsdetektoren



22

Kathodenstrahlröhren, Monitoren

Zahnheilkunde


unterschiedliche Fluoreszenzeigenschaften von gesunden und malignen Geweben

Zahnoberfläche im nativen Zustand und nach Fluoreszenzfärbung

sondierbare Karies

Oberfläche der Milchzähne im nativen Zustand und nach Fluoreszenzfärbun

aktive Karies