

Physikalische Grundlagen der zahnäzrtlichen Materialkunde 1.

Einführung

Z.B.:

alle: Al₂O₃!

•	
Wa	ıs?

 \bigcirc

	Woche	Datum	Thema
	1	14.09.	Struktur der Materie Atomare Wechselwirkungen, Bindungen. Multiatomare Systeme: Gase, Boltzmann-Verteilung
0	2	21.09.	Flüssigkeiten, feste Körper, Flüssigkristalle
-	3	28.09.	Kohäsion, Adhäsion, Grenzflächenerscheinungen. Phase, Phasendiagramm, Phasenumwandlungen
	4	05.10.	Strukturuntersuchungsmethoden (Mikroskopie, Diffraktion, Spektroskopie)
	5	12.10.	Metalle, Legierungen
	6	19.10.	Keramiken, Polymere, Komposite
	7	26.10.	Eigenschaften der Materialien Mechanische Eigenschaften 1: Elastisches Verhalten
	8	02.11.	Mechanische Eigenschaften 2: Plastische Verformung, Bruch, Härte
	9	09.11.	Mechanische Eigenschaften 3: Viskoelastisches Verhalten, Materialermüdung, Verschleiß
	10	16.11.	Thermische und elektrische Eigenschaften
	11	23.11.	Optische Eigenschaften. Vergleichende Zusammenfassung der Eigenschaften
	12	30.11.	Biomechanik Struktur und mechanische Eigenschaften von biologischen Geweben
	13	07.12.	Biomechanische Grundlagen der Implantologie
	14	14.12.	Biomechanische Grundlagen der Kieferorthopädie (Gastvortragende: Dr. Topa Orsolya, Klinik für Kinderzahnheilkunde und Kieferorthopädie)

"Sage es mir, und ich vergesse es; zeige es mir, und ich erinnere mich; lass es mich tun, und ich verstehe es.,

(Konfuzius)

The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' (I found it!), but 'That's funny...'

(Isaac Asimov)

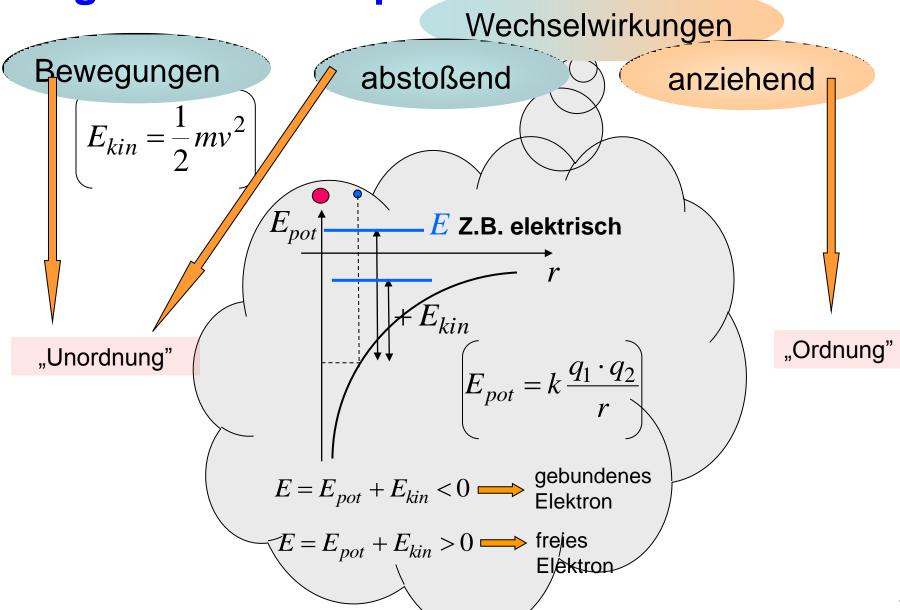
Nützliche Infos

- Tölgyesi Ferenc, Dozent (<u>ferenc.tolgyesi@eok.sote.hu</u>) Institut für Biophysik und Strahlenbiologie
- Webseite: http://biofiz.sote.hu
- W.D. Callister: Materials Science and Engineering. An Introduction (7th ed.), Wiley&Sons, 2007
- K.J. Anusavice: Phillips' Science of Dental Materials (11th ed.), Saunders, 2003
- Damjanovich, Fidy, Szöllősi: Medizinische Biophysik, Medicina 2008
- O 2 Zwischenprüfungen: 7. und 13. Woche

O Prüfungsform: Kolloquium (mündlich)

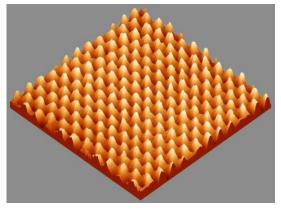
Note:

2. Test Kolloquium insgesamt 1. Test 20 Punkte + 20 Punkte 90 Punkte 50 Punkte Min. 20 Punkte!!

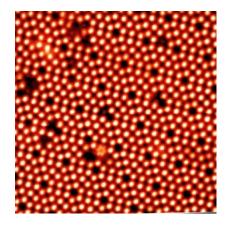

Physikalische Grundlagen der zahnärztlichen Materialkunde

1.

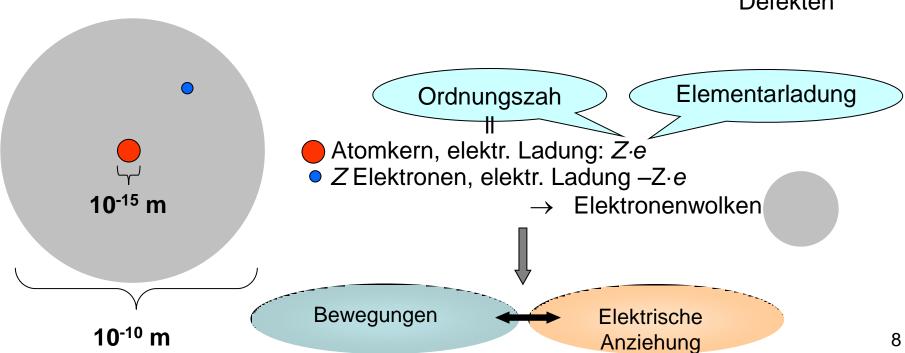
Struktur der Materie


Atomare Wechselwirkungen. Multiatomare Systeme - Gase

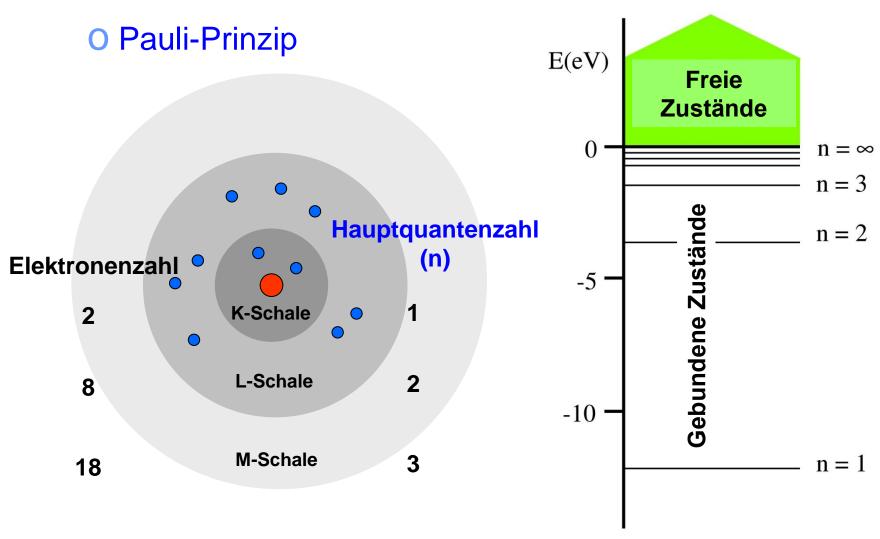
Allgemeine Prinzipien



Atomarer Aufbau der Materie


- Demokritos 5.Jht v.Chr.
- Daltonsches Gesetz 1803
- Moderne Mikroskope:

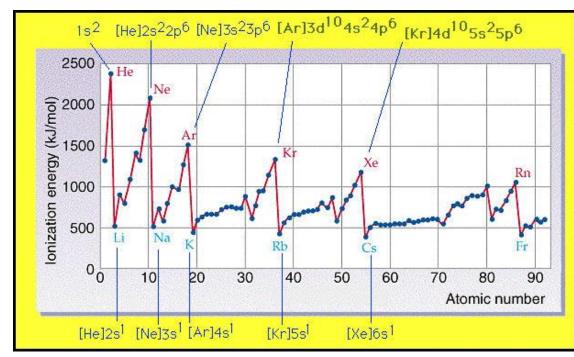
Graphit


Si Kristall mit Defekten

O Energieminimum

Eine "neue" Maßeinheit: Elektronenvolt (eV), es gilt $1 \text{ eV} = 1,6 \cdot 10^{-19} \text{ J}$

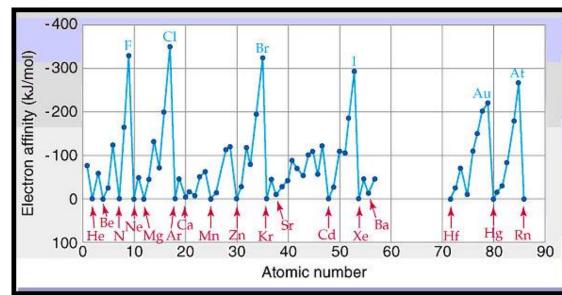
O Diskrete Energiezustände

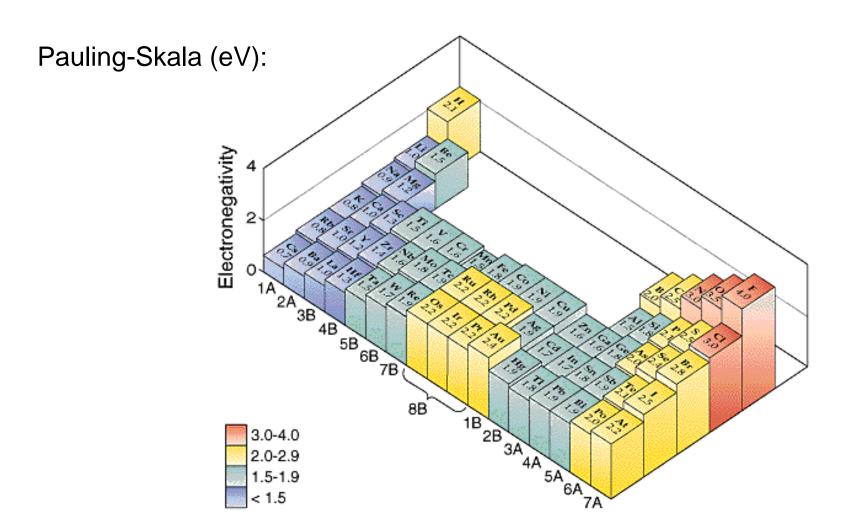

Periodensystem

									Metal								
1 H 1.0080	IIA	Key 29 Atomic number Cu Symbol 63.54 Atomic weight							Nonmet	al		IIIA	IVA	VA	VIA	VIIA	0 2 He 4.0026
3 Li 6.941	4 Be 9.0122				7100	To Troig.			Interme	diate		5 B 10.811	6 C 12.011	7 N 14.007	8 0 15.999	9 F 18.998	10 Ne 20.180
Na 22.990	Mg 24.305	IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB	Al 26.982	Si 28.086	P 30.974	S 32.064	CI 35.453	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.87	50.942	51.996	54.938	55.845	58.933	58.69	63.54	65.41	69.72	72.64	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.4	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.30
55	56	Rare	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	earth	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.34	series	178.49	180.95	183.84	186.2	190.23	192.2	195.08	196.97	200.59	204.38	207.19	208.98	(209)	(210)	(222)
87 Fr (223)	88 Ra (226)	Acti- nide series	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)								
Rare earth series		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		138.91	140.12	140.91	144.24	(145)	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97	
Actinide series		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Elektronegativität

Ionisationsenergie (1):

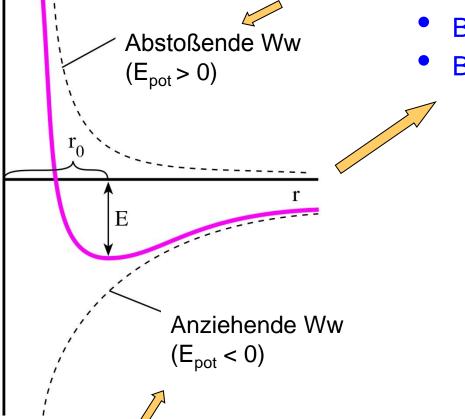

Zur Entfernung des äußersten Elektrons benötigte Energie (eV/Atom; kJ/mol)



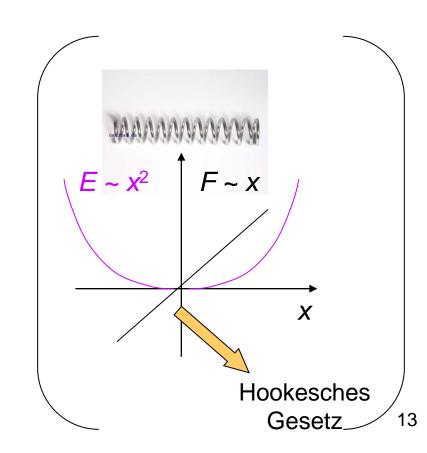
Elektronaffinität (A):

Bei der Aufnahme eines Elektrons freigesetzte Energie (eV/Atom; kJ/mol)

Elektronegativität = $\left|I\right|+\left|A\right|$

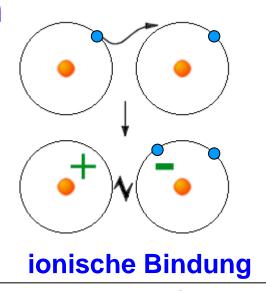


Atomare Wechselwirkungen

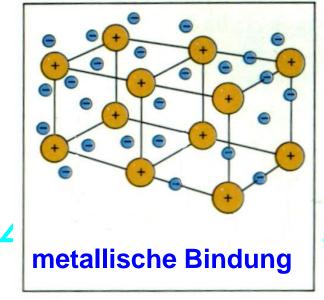

(Abstoß zw. den Kernen, Pauli-Prinzip)

Bindungslänge

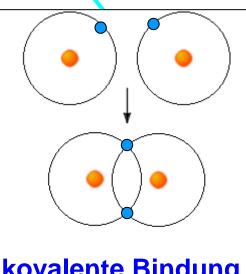
- Bindungslänge (r_0) $\approx 0,1$ nm
 - Bindungsenergie (E) ≈ 2-1000 kJ/mol



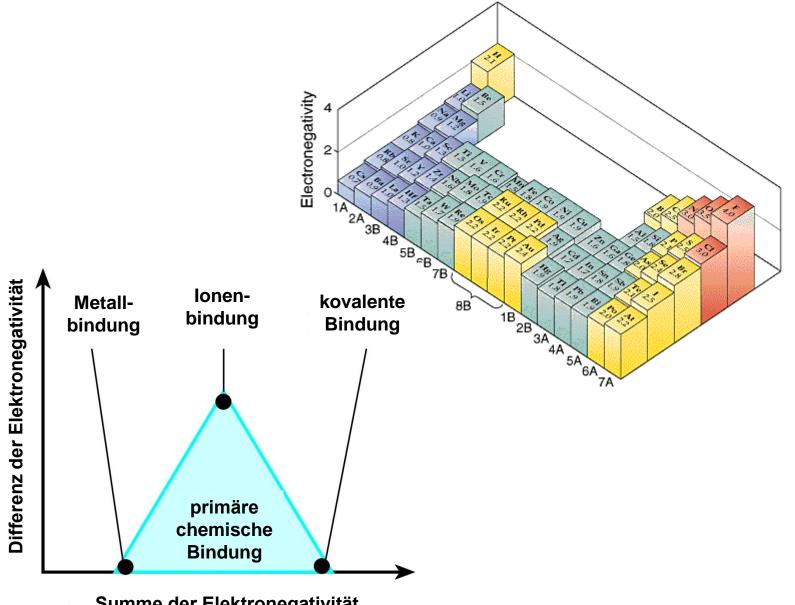
- gemeinsame Elektronenbahnen
- elektrische Anziehung (Ion-Ion, Ion-Dipol, Dipol-Dipol)



Bindungstypen

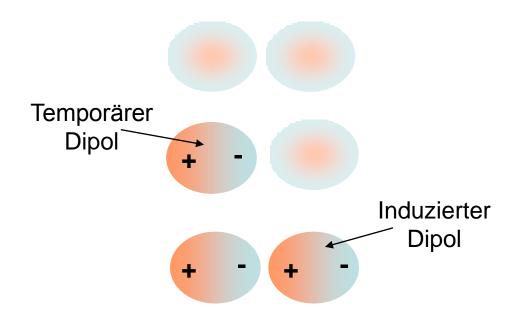

- primäre ≈100 kJ/mol
 - kovalente
 - metallische
 - ionische

Z.B. NaCl

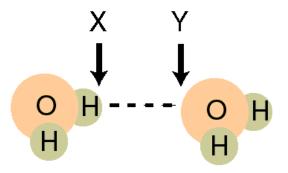


Z.B. Na

kovalente Bindung


Z.B. H₂

Summe der Elektronegativität


- sekundäre ≈ 10 kJ/mol
 - van der Waals (Orientierung, Induktion, Dispersion)
 - H-Brückenbindung

van der Waals Bindung (Dispersionskräfte)

Z.B. Edelgas

H-Brückenbindung

Zwischen 2 Atomen von hoher Elektronegativität (Z.B. O, N, ...)

Z.B. Wasser

Aggregatzustände

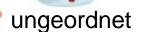
Anziehende Ww

← Abstoßende Ww + Bewegungen

 $T(\sim E_{\rm kin})$

Eigenvolumen + + -		Fest	Flüssig	Gasförmig
Figenform	Eigenvolumen	+	+	-
	Eigenform	+	-	-

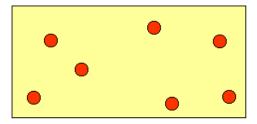
Kristallin (Festkörper)



Nahordnung

- Fernordnung
- Kristallgitter

Dichte (ρ): $\rho = \frac{m}{2}$


Spezifisches Volumen (v):

Dichtewerte:

Weitere Maßeinheit: 1 g/cm³ = 1000 kg/m³

Stoff	ρ (g/cm 3)
Zahnschmelz	2,2
Dentin	1,9
Wasser	1
Amalgam	≈ 12
Gold	19,3
Goldlegierungen	12-17
Pd-Ag Legierungen	10-12
Co-Cr Legierungen	8-9
Ni-Cr Legierungen	≈ 8
Glas	2,2-2,7
Keramiken	1,6-3,9
Porzelan	2,2-2,4
Gips	2,31-2,76
PMMA (Polimethyllmetakrilat)	≈ 1,2
Silikon	≈ 1,4

Gase

Makroskopische Beschreibung:

- Kein Eigenvolumen und keine Eigenform
- Isotrop
- Messbare Größen:

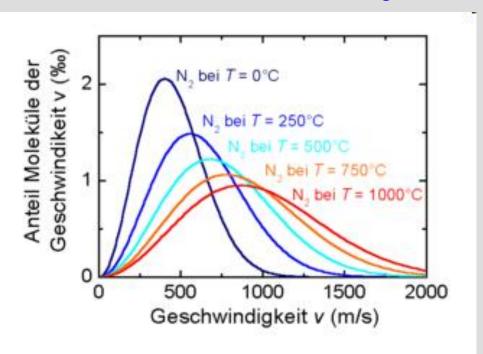
Druck

Volumen

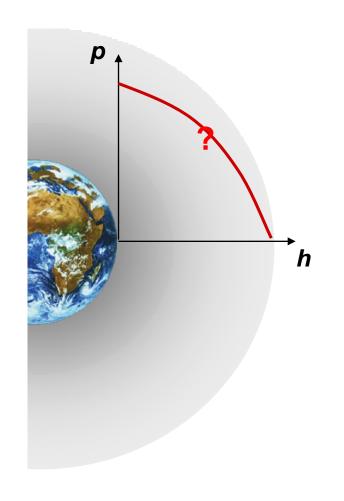
Stoffmenge

p, V, v, T

$$pV = vRT$$

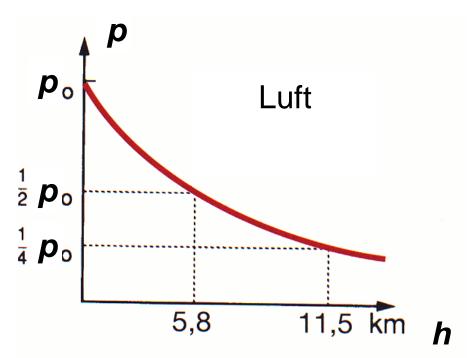

(für ideale Gase)

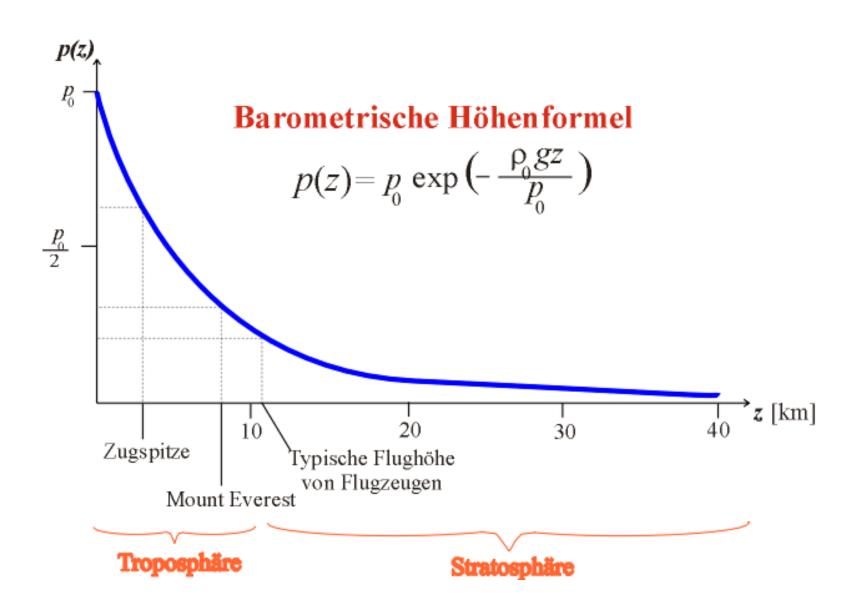
Mikroskopische Beschreibung:


- Ungeordnet
- Starke und fast freie Bewegung

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}kT$$

Maxwell-Boltzmann- Verteilung




Gas im Gravitationsfeld – barometrische Höhenformel:

Im thermischen Gleichgewicht:

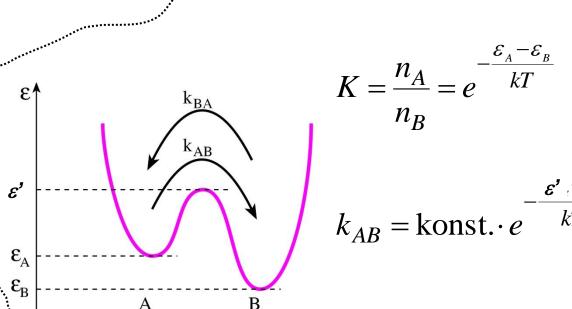
$$p = p_0 \cdot e^{-\frac{mgh}{kT}}$$

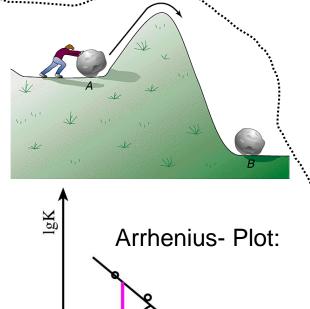
Boltzmann-Verteilung im Allgemeinen

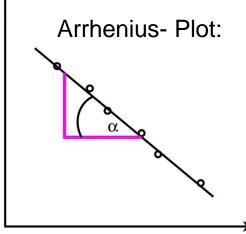
Die Verteilung der Teilchen auf die Energiezustände im thermischen Gleichgewicht (T = konstant):

$$n_{i} = \frac{\varepsilon_{i}}{n_{0}} \Delta \varepsilon$$

$$n_{i} = n_{0} \cdot e^{-\frac{\varepsilon_{i} - \varepsilon_{0}}{kT}}$$


$$n_i = n_0 \cdot e^{-\frac{\mathcal{E}_i - \mathcal{E}_0}{kT}}$$


$$n_{i} = n_{0} \cdot e^{-\frac{\mathcal{E}_{i}}{kT}} = n_{0} \cdot e^{-\frac{\Delta \mathcal{E}}{kT}} = n_{0} \cdot e^{-\frac{\Delta E}{RT}} \qquad \left(\begin{array}{c} \Delta E = \Delta \mathcal{E} \cdot N_{A} \\ R = k \cdot N_{A} \end{array}\right)$$


Anwendungen:

- Barometrische H\u00f6henformel
- Thermische Elektronenemission von Metallen
- Konzentrationselemente, Nernst-Gleichung
- Chemische Reaktionen (Geschwindigkeits- und Gleichgewichtskonstante)
- Konzentration von thermischen Punktdefekten (in Kristallen und Makromolekülen)
- Elektrische Leitfähigkeit von Halbleitern

Hausaufgaben

- 1.1. CO₂-Gas befindet sich in einem Behälter, die Anzahl der Moleküle beträgt 3,6·10²¹. Berechnen Sie die Stoffmenge und die Masse des Gases!
- 1.3. Die Ionisationsenergie von Na-Atom beträgt 496 kJ/mol. a) Was ist die Ionisationsenergie für ein einziges Atom in eV-Einheit? b) Was ist die Wellenlänge des Lichtes, dessen Photonenenergie gerade diesen Wert beträgt?
- 1.9. Das Volumen einer Amalgamfüllung beträgt 12 mm³. Berechnen Sie die Masse!
- 1.10. Haben 10²⁵ H₂O-Moleküle Platz in einem Glas des Volumens 2 dl?
- 1.13. Die Temperatur von N₂-Gas beträgt 25°C, die Stoffmenge ist 1 mol. a) Was sind durchschnittliche kinetische Energie und Geschwindigkeit von N₂-Molekülen? b) Was ist gesamte kinetische Energie der Moleküle in dem Gas?
- 1.17. Wenn die Atmosphäre ruhig und ihre Temperatur 0°C wäre, in welcher Höhe würde die Sauerstoffkonzentration auf die Hälfte sinken? (5 km)
- 1.19. Wenn die Atmosphäre ruhig und ihre Temperatur 0°C wäre, in welcher Höhe würde a) die Kohlenstoffdioxydkonzentration b) die Konzentration von Toluol (Zivilisationsverunreinigung; molare Masse: 92,1 g/mol) auf die Hälfte sinken?

Lösungen:

- 1.1. 5,98 mmol und 263 mg
- 1.3. a) 5,15 eV; b) 241 nm
- 1.9. 144 mg
- 1.10. nein
- 1.13. a) 0,00617 aJ und 515 m/s; b) 3710 J/mol
- 1.17. 5010 m
- 1.19. a) 3640 m; b) 1740 m