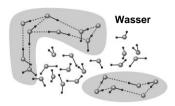
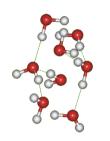


Physikalische Grundlagen der zahnärztlichen Materialkunde

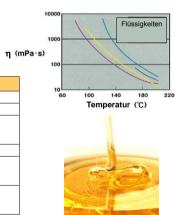

2. Struktur der Materie

Multiatomare Systeme: Flüssigkeiten, feste Körper, Flüssigkristalle


Flüssigkeiten

Viskosität/Fluidität

- Eigenvolumen
- Keine Eigenform/flüssig
 keine innere Scherkräfte
- Nahordnung
 10-100 nm große geordnete dinamische Bereiche
- Viele Strukturdefekte
- mittelstarke Bewegungen
- Isotrop

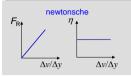


η hängt ab: • vom Stoff

von der Temperatur

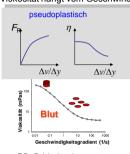
Viskosität von einigen Stoffen:

•				
Stoff	η (mPas)			
Luft	0,019 (20° C)			
Wasser	1 (20° C)			
Künstlicher Speichel (USA Patent)	2–10			
Glycerin	1500 (20° C)			
Methyl- Methakrylat- Monomer	0,5 (25° C)			
Ethylenglykol- Dimethakrylat- Monomer	3,4 (25° C)			
Zinkphosphat	95 000 (25° C)			
Zinkoxid-Eugenol	100 000 (37° C)			
Silikon	60 000-1 200 000 (37° C)			


4

η hängt ab: • von den Scherkräften (vom Geschwindigkeitsgradienten)?

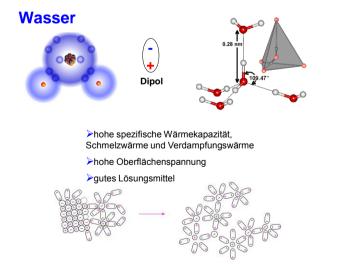
Normale (newtonsche) Flüssigkeit:

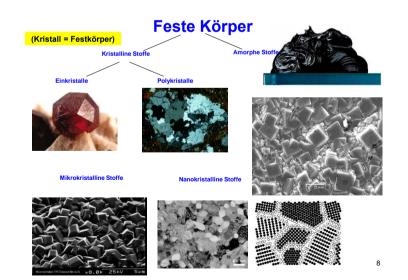

Die Viskosität hängt vom Geschwindigkeitsgradienten nicht ab.

Anomale (nicht-newtonsche) Flüssigkeit:

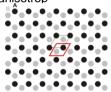
Die Viskosität hängt vom Geschwindigkeitsgradienten ab.

Z.B.: Polykarboxylatzement


Z.B.: einige Komposite


5

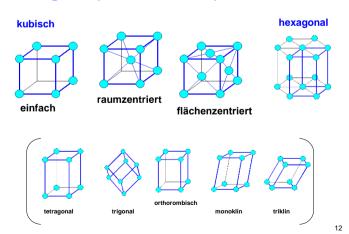
Bitte nicht verwechseln mit pseudoplastischen

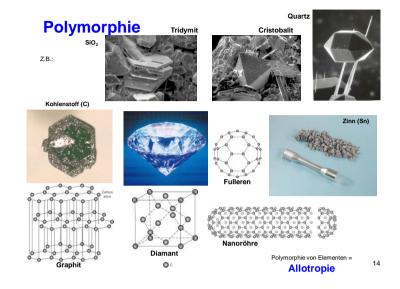

und dilatanten Flüssigkeiten!

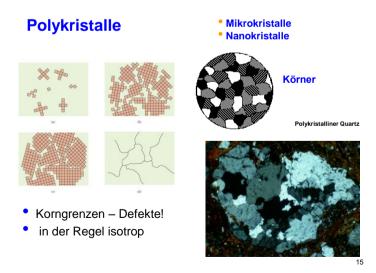
Festkörper (Kristalle)

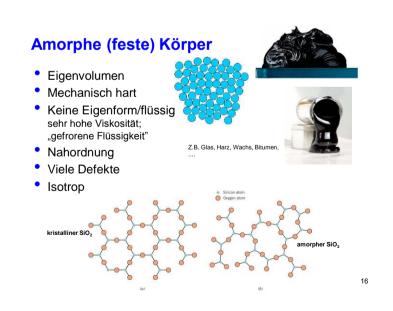
- Eigenvolumen/Eigenform
- Fernordnung
 geordnete Struktur in makroskopischen
 Bereichen
- Periodizität, Elementarzelle, Kristallgitter
- Wenig Defekte
- Schwache Bewegungen
- Oft anisotrop

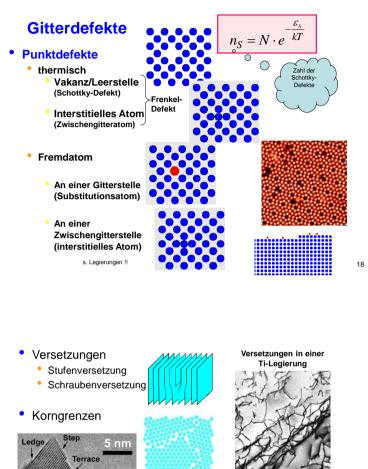
Bindung	Grund- einheit	Bindungs -energie kJ/mol	mechanische Eigenschaften ?	Schmelzpunkt ? Härte?	Elektr. Leitung?
kovalent	Atom	100-1000	steif	hoch	-
ionisch	+/- Ionen	500-1500	steif	hoch	-
metallisch	+ Ion; Elektron	70-900	plastisch	hoch	+
H-Brücke	Molekül	≈20	steif	niedrig	-
v.d.Waals	Molekül/ Atom (bei Edelgasen)	≈2	weich	sehr niedrig	-

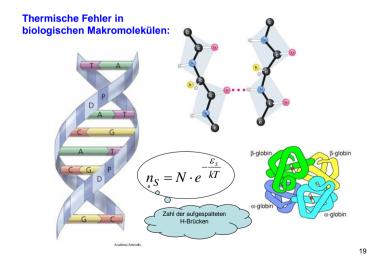


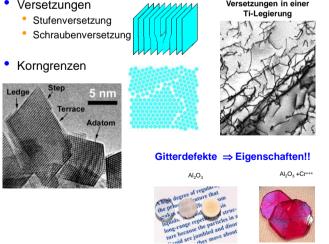


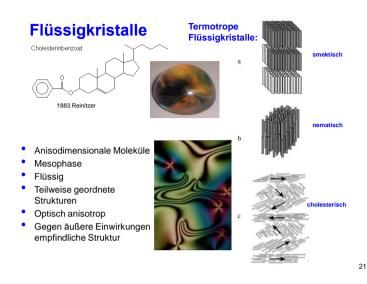

Atomkristall
Ionenkristall
Metallkristall
Molekülkristall

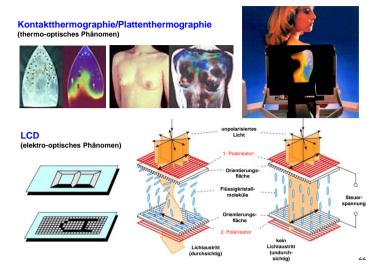

Raumgitter (Kristallklassen)

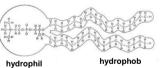




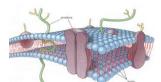








.


Phospholipidmolekül

Liposom

23

Lamellare Struktur

Hausaufgaben

- 1.32. Die Aktivierungsenergie der Vakanzbildung in Kupfer beträgt 0,9 eV. a) Was ist der prozentuelle Anteil der Vakanzen bei einer Temperatur von 1000°C? b) Wie viele Vakanzen gibt es bei dieser Temperatur in einer Kupferkugel des Durchmessers 2 cm?
- 1.34. Wie groß ist die Aktivierungsenergie der Vakanzbildung (in eV-Einheit) in Silber, wenn die Zahl der Vakanzen pro m³ und bei einer Temperatur von 800°C den Wert 3,6·10²³ beträgt. (Die Dichte des Silbers bei dieser Temperatur beträgt 9,5 g/cm3.)
- 1.35. Auf welche Temperatur ist Platin von Raumtemperatur (22°C) zu erwärmen, damit der Anteil der Vakanzen auf das Zehnfache wächst? (Die Aktivierungsenergie der Vakanzbildung in Platin beträgt 126 kJ/mol.)

Lösungen: 1.32. – a) 0,0275%; b) 9,78·10¹⁹ 1.34. – 1,1 eV

24

1.35. – 35,8°C

6