Physical Biology of the Living Cell - Il. semester

Wednesdays 11:15-13:00

Diffusion, polymerization, reptation Sept. 15
(Dr. Miklos Kellermayer)

Motor proteins, out of equilibrium processes Sept. 22
(Dr. Miklos Kellermayer)

The second law of thermodynamics in small systems, Evans-Searles fluctuation Sept. 29
theorem (Dr. Szabolcs Osvath)

Crooks fluctuation theorem Oct. 6
(Dr. Szabolcs Osvath)

Jarzinski equality Oct. 13
(Dr. Szabolcs Osvath)

Thermodynamics of molecular motors Oct. 20
(Dr. Szabolcs Osvath)

Protein structure prediction, use of structural databases Nov. 3
(Dr. Tamas Hegeds)

Modeling protein folding and conformational changes Nov. 10
(Dr. Tamas HegedUs)

Protein - protein interactions and protein networks Nov. 17
(Dr. Tamas Hegedus)

Thermodynamic characterization of protein - protein and protein-ligand interactions Nov. 24
(Dr. Gyorgy Ferenczy)

Computer modeling of protein - ligand binding I. Calculating thermodynamic quantities Dec. 1
(Dr. Gyorgy Ferenczy)

Computer modeling of protein - ligand binding Il. Estimating thermodynamic quantities Dec. 8
using approximations (Dr. Gyorgy Ferenczy)

Problem solving and consultation Dec. 15

(Dr. Szabolcs Osvath)




PHYSICAL BIOLOGY OF THE

LIVING CELL II.
DIFFUSION, POLYMERS, REPTATION

MIKLOS KELLERMAYER



e Diffusion, diffusion-driven
processes

* Shape of polymers

e Diffusion of polymers,
reptation.



THERMODYNAMIC CURRENTS

* Natural processes are rarely reversible.

* If there are inequalities in the intensive variables at different locations within the system,
thermodynamic currents arise.

* Thermodnamic currents (irreversible processes) aim at the restoration of equilibrium.
* Irreversible processes are described by irreversible thermodynamics.
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MATERIAL TRANSPORT (DIFFUSION)

Relevant intensive

Thermodynamic variable (its gradient Current density Law

current drives current)
. Ac
Material transport : : J =-D— :
(diffusion) Chemical potential (u) n Ax Fick
\2
¢y solution C,
X ' m Ac
m = amount of material transported - = Jn =D —

t = time tA
R = tube radius

X = tube length

(Ac/Ax = concentration gradient, maintained by c;-c))

A = cross-sectional area of tube

Jn = material transport current density

D = diffusion coefficient



DIFFUSION

* Spontaneous mixing, distribution concentration-
equilibration of particles driven by thermal motion.

A
A
water
K, -
dye
start end (after a few days)

x = displacement of boundary (in reality, it is the

) smearing of the boundary)
X = 2Dt t = time

D = constant (diffusion coefficient)



Microscopic manifestation of
diffusion: Brownian motion

Robert Brown Lipid droplets suspended in milk
(1773-1858) (droplet size 0.5 - 3 ym)



Brownian-motion

3; Random walk
vars o ?

o )
‘o
SV o T [ = mean free path (average

distance between consecutive
collisions)

v = average velocity of the
thermally propelled particle

Random motion of the microscopic
(Brownian) particle is the result of
stochastic collisions with molecules.



DIFFUSION

* Fick’s I. law: material flow density is the product of the
evoking concentration gradient and the diffusion coefficient.

Material flow AC J» = material flow density
density (material J = —])——  Ac/Ax = drop in concetration (gradient)
transport): n Ax D = constant (diffusion coefficient)
v = average velocity of thermally
1 propelled particle
o . [ = mean free path (average distance
Diffusion coefficient: D = — Vl between consecutive collisions)
3 D = amount of material transported

across unit cross-sectional area per
unit time (m2/s) (at unit
concentration drop).

Brownian motion

Diffusion coefficient
for spherical particle:

k T Einstein-Stokes equation:
— B ks = Boltzmann’s constant ]

_ T’ = absolute temperature «7
67”77" 5 = viscosity

r = radius of particle



DIFFUSION

* Fick’s Il. law: instantaneous material flow density depends on
the temporal change of the evoking concentration gradient.

AJ — Ac
Material flow: — - —
Ax At
()
Diffusion coefficient: D Ax _ E
Ax At

Concentration gradient decreases with
time (boundary becomes smeared)

Jn = flow density
x = distance
! = time

D = diffusion coefficient.

A c(x)




Diffusion provides rapid transport
only on a short length scale

ion channel
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Diffusion provides rapid transport
only on a short length scale

(A)  secon ds




Biopolymers (biological
polymers)
Polymers:
chains built up from monomers
Number of monomers: N>>|;

Typically, N~102-104,
but, in DNA, e.g.: N~10%-1010

Biopolymer Monomer Bond
: : : Covalent
Protein Amino acid (peptide bond)
Nucleic acid Nucleotide Covalent
(RNA, DNA) (CTUGA) (phosphodiester)
Polysaccharide Sugar Covalent
(e.g., glycogen) (e.g., glucose) (e.g., Q-glycosidic)
Protein polymer Protein

Secondary

(e.g., microtubule) (e.g., tubulin)




Shape of the polymer chain
resembles random walk

|D random walk 3D random walk

dsDNA molecule



Shape of the polymer chain
resembles random walk

Brownian-movement -

¢¢ b B )
re-r | .
“rardom walk’ Squa oot law

(R*)= NI’ = LI

R = end-to-end distance

N = number of elementary vectors
[ = |7l| = correlation length

r; = elementary vector

NI = L = contour length

[ is related to bending rigidity.

In case of Brownian-movement R = displacement, N = number of
elementary steps, L = total path length, and / = mean free path length.

[

Average particle py — — Total diffusion Diffusion _ 1
: vl:;locity: v T time: [ = Nt coefficient: 3Vl

(RY=INI* = |21 = Vvl =3D¢

T



Shape and shape change of a
random polymer chain

The tendency of maximizing the orientational
Brownian motion disorder (entropy) of elementary vectors leads

to elastic behavior
(random walk)

Entropic elasticity:
Upon thermal excitation, the polymer chain goes
through random fluctuations, shape changes.

. |

elementary vector: rn

Conformational entropy of the chain (orientational
entropy of the elementary vectors) increases.

. |

The polymer chain contracts.

Square-root law:

(R*)= NI* = LI

* * * * * * W * * * * + *




Equilibrium shape of a random
polymer
The macrostate which can be realized by the largest number

of microstates (the most probable state)

Spatial distribution of microstates

4

Temporal distribution of microstates

MICROSTATE 1 MICROSTATE 2 MICROSTATE 3 etc.

AFM image of surface-adsorbed
dsDNA molecules (identical
contour length, PCR product)



Wormlike chain polymer model

WLC (wormlike chain):
O(s)
—
\)
if s is large enough, then <COSH(S)> decays as a function of s: <COSB(S)> = expl — —

[,=persistence length lp

If s<<I,, then <COSH(S)> ~1,and 0(s) fluctuates around O.
If $>>1, then <Cost9(s)> ~0,
that is, O(s) may be between 0° and 360" with equal probabilities.

Meaning of persistence length:

statstical distance across which the chain retains its orientation (remembers it).
l.e., the orientation “persists’.

Beyond the persistence length the chain forgets its orientation.

El EI = flexural ridity (£ =Young’s modulus - material dependent, / = second moment of
| = cross section - shape dependent); k37" = thermal energy

Meaning: the more rigid the chain, the greater the distance (/,) beyond which the thermal
fluctuations become detectable.



Relationship between the shape and
elasticity of the polymer chain

Rigid chain
Ly,>> L,
(mm >> 10 ym)

Semiflexible
chain

Ly,= L
(ym = pm)

Flexible chain

L, << L.
(50 nm << cm)

L, = persistence length
L. = contour length

Microtubule

%
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dividing cell

Microfilament (actin)

actin
tubulin

dsDNA




Visualization of a random
(entropic) chain

Tying a knot on a single dsDNA molecule
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Visualization of a random
(entropic) chain
Extending dsDNA with drag force (fluid flow)

- -

dsDNA
molecules
ejected from T7 -
bacteriophages
and labeled,
instantaneously,
with sytox e

*0.000 s g 10 pm



Physical size of the human genome

\.‘ i

(20 m) model: cube

I 20 pm Simplified cell

Cell:
20 pm edge cube

Analog -
Lecture hall:
20 m edge cube

DNA thickness 2 nm 2 mm
~2000 km (")
Ful Ieng['gf;\lc: human ~2m (Perimeter of Hungary:
~2200 km)
Persistence length of N N
dsDNA (L») 50 nm 50 cm
Mean end-to-end length
\/@ _ \/LCTP ~350 pm (!) ~350 m (!)
Radius of gyration (R¢)
Volume of fully - 3 ~2x2x2md
compacted DNA 2Xx2x2 pm (= 8 m3)

Solution: DNA needs
to be packed!

Chromosome condensation

Nucleosome: histone protein
complex (octamer) + DNA

R wound ~ 1.6 times
5

* Condensins play a role in high-order DNA packaging
* DNA chain: complex linear path with roadblocks!



SPECIAL CASE OF DIFFUSION: REPTATION

e Reptation: “snakelike”diffusional motion within polymer network (“Reptilia™)

Polymer matrix:
“entanglement”

Indiana Jones and Actlrlglllirlréigtzqgm(ethyl-
Raiders of the Lost Ark Unidirectionalized diffusion

Filament inside
the reptational
channel

N

7» = Reptation time: time required

) 2 D, = Reptation diffusion coefficient;
[ - N for traveling a distance equivalent (Cl =N N) N = number of elementary segments; a =
= to one contour length; — length of elementary segment
: - k-T L= contour length; N = number of Dr o

(~persistence length); 7. = reptation time.
r N.B.: numerator is analogous to the mean-
square-displacement.

elementary segments; 4 = chain v
mobility; kT = thermal energy



