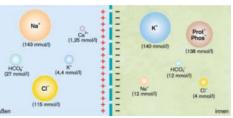

Grundlagen der medizinischen Biophysik



7. Vorlesung 30. 09. 2021 Ádám Orosz Elektrizitätslehre

Elektrische Ladung und Ladungsträger

Elektrische Ladung

- Die elektrische **Ladung** ist **an Materie gebunden**, sie ist eine wesentliche Eigenschaft der Materie (wie die Masse)
- · Es gibt positive und negative Ladungen
- SI-Einheit der Ladung: Coulomb (C)
- Die elektrische **Ladung** ist eine **gequantelte Größe** und die kleinste Ladungsmenge wird als **Elementarladung** (e) bezeichnet: $e = 1, 6 \cdot 10^{-19}$ C

Elektrische Ladungsträger

- · Lädungsträger sind Teilchen, die eine elektrische Ladung tragen, z. B.
 - · das Elektron, seine Ladung ist -e
 - das Proton, seine Ladung ist +e

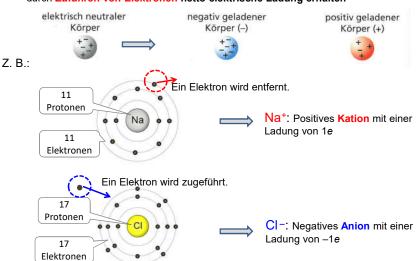
Faraday-Konstante (F)

• Die Faraday-Konstante entspricht der Gesamtladung von 1 mol Protonen:

$$F = N_A \cdot e = 6,03 \cdot 10^{23} \frac{1}{\text{mol}} \cdot 1,6 \cdot 10^{-19} \text{C} = 96500 \frac{\text{C}}{\text{mol}}$$

Grundklausur

• Termin der Klausur: 8. Oktober 2021. 18:30-19:00, Online Moodle Test


Dauer: 30 min

• 25 Fragen: richtige Antwort: +3; falsche Antwort -1. Keine Antwort: 0

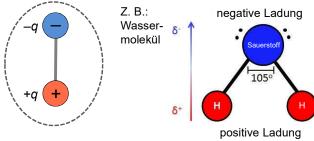
- Die Prüfung wird per Zoom überwacht und aufgenommen. Den Test können Sie auf der Moodle-Seite erreichen. Sie erhalten vor der Prüfung einen Link zum Meeting durch das Neptun-System.
- Für die Prüfung darf nur ein einziges Gerät verwendet werden, beispielsweise ein Computer oder Laptop. Wenn nur ein Handy/Tablet erreichbar ist, sind diese auch gestattet.
- Die Kamera des Geräts muss während der gesamten Prüfung ständig eingeschaltet sein.
 Anwendung von Kopfhörern oder Headsets ist verboten.
- Sie müssen einen in Neptun registrierten Ausweis
 (Personalausweis/Reisepass/Studentenausweis) vor Beginn für 10 s in die Kamera zeigen.
- Sie dürfen nur leere Papierblätter und Stifte benutzen und Taschenrechner.
- Konstante die Sie auswendig wissen müssen: Avogadro Konstante, Lichtgeschwindigkeit, Erdbeschleunigung
- · Konsultation: 7. Oktober 15:30 -17:00 Szent Györgyi Hörsaal

Aufladung eines Körpers

- Atome, Moleküle, makroskopische Objekte sind im allgemeinen elektrisch neutral, da diese gleich viele Elektronen wie Protonen enthalten
- Körper (Atome, Moleküle, makroskopische Körper) können durch Entfernung oder durch Zuführen von Elektronen netto elektrische Ladung erhalten

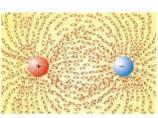
3

Aufladung eines Körpers

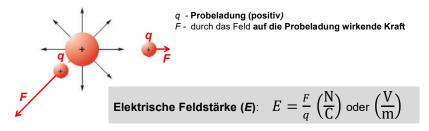


Reibungselektrizität

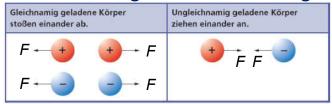
ἤλεκτρον - ēlektron - "Bernstein"


Elektrischer Dipol

- Die Anordnung von zwei gleich großen ungleichnamigen Ladungen q bei einem Abstand.
- Insgesamt bleibt der Körper neutral.


Elektrisches Feld

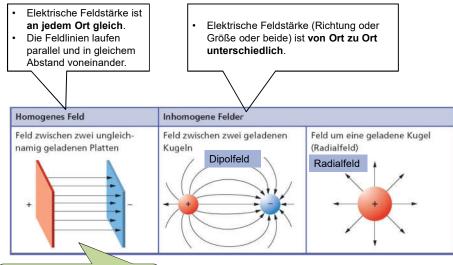
- Ein Modell für die Beschreibung der Wechselwirkung zwischen Ladungen: Ladungen erzeugen um sich herum ein elektrisches Feld und üben nicht direkt Kräfte aufeinander aus, sondern durch das elektrische Feld.
- Das Feld wird durch Feldlinien veranschaulicht; dies sind Kurven, deren Tangenten an jedem Punkt die Richtung des Feldes, d. h. die Richtung der Kraftwirkung, anzeigen und deren Dichte zur Stärke des Feldes proportional ist.



 Grießkörnchen im elektrischen Feld zwischen zwei ungleichnamig geladenen Elektroden

Elektrische Feldstärke

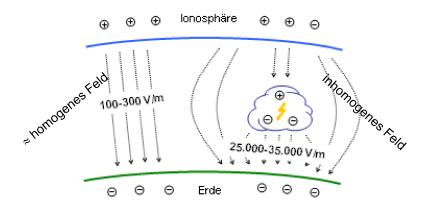
Wechselwirkungen zwischen Ladungen


Coulomb-Gesetz: $F = k \frac{q_1 q_2}{r^2}$

- Das Gesetz ist analog zum Gravitationsgesetz
- Die elektrische Anziehungskräfte zwischen dem Atomkern und den Elektronen halten das Atom zusammen!

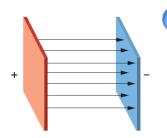
Woher wissen zwei Ladungen von einer Entfernung, dass sie sich anziehen oder abstoßen müssen?

Das elektrische Feld dient als "Vermittler" zwischen den Ladungen.


Homogene und inhomogene elektrische Felder

z. B. Plattenkondensator (zwei leitende Platten durch einen Isolator voneinander getrennt)

8

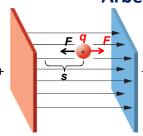

Elektrisches Feld der Erde

Übung

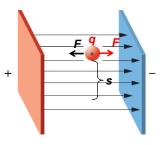
Die Feldstärke des homogenen Feldes in der Abbildung beträgt 2400 N/C.

a) Man platziert eine Probeladung *q* = 0,05 C in das Feld. Welche Kraft wirkt auf die Probeladung (Betrag und Richtung)?

b) Man platziert ein Elektron in das Feld. Welche Kraft wirkt auf das Elektron (Betrag und Richtung)?

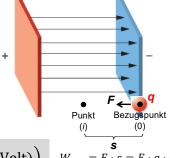

9

11


10

12

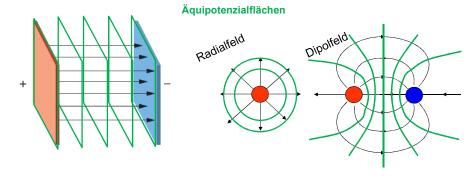
Arbeit im elektrischen Feld


- Auf eine sich in einem elektrischen Feld befindende Ladung wirkt eine Kraft, die **elektrische Kraft**: $F = E \cdot q$
- Um das Teilchen entgegen der elektrischen Kraft entlang des Weges s zu bewegen, muss die Arbeit W verrichtet werden: W = F · s = E · q · s

- Wird das Teilchen senkrecht zu den Feldlinien bewegt, so muss keine Arbeit verrichtet werden:
 W = E·a·s·cos90° = 0
- Eine schräge Bewegung im Feld kann aus einer wagrechten und einer senkrechten Bewegung zusammengesetzt werden

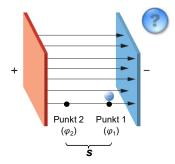
Elektrisches Potenzial

- Jedem Punkt eines elektrischen Feldes kann ein Potenzial (φ) zugeordnet werden
- Dieses Potenzial entspricht der Arbeit, die man verrichten müsste, um eine Ladung von 1 C vom (willkürlich gewählten) Bezugspunkt (0) zum entsprechenden Punkt des Feldes (i) zu befördern
- Zum Bezugspunkt wird das Potenzial von 0 willkürlich zugeordnet



Elektrisches Potenzial (
$$\varphi$$
): $\varphi_i = \frac{W_{0 \to i}}{q} \left(\frac{\mathsf{J}}{\mathsf{C}} = \mathsf{V} \left(\mathsf{Volt} \right) \right)$

Im Falle eines homogenen Feldes:
$$\varphi_i = \frac{W_{0 \to i}}{q} = \frac{E \cdot q \cdot s}{q} = E \cdot s$$

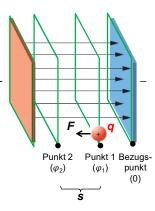

Äquipotenzialflächen

- Alle Punkte, die das gleiche Potenzial besitzen, liegen auf einer Fläche, der Äquipotenzialfläche
- Die Feldlinien verlaufen senkrecht zu den Äquipotenzialflächen
- Bewegt man eine Ladung innerhalb einer Äquipotenzialfläche, so wird keine Arbeit verrichtet
- In homogenen Feldern sind die Äquipotenzialflächen Ebenen, in inhomogenen Feldern beliebig gekrümmte Flächen

Übung

- 1. Die Feldstärke des Feldes in der Abbildung beträgt 2400 N/C.
- b) Berechnen Sie die Potenzialwerte der Punkte 1 und 2.

13


- a) Berechnen Sie die Spannung zwischen den Punkten 1 und 2.
- 2. Man platziert ein Elektron in den Punkt 1.
- a) Wie groß ist die Arbeit, die das Feld an dem Elektron vom Punkt 1 bis zum Punkt 2 verrichtet?
- b) Wie groß ist die Geschwindigkeit des Elektrons im Punkt 2, wenn es im Punkt 1 aus Ruhe startet?

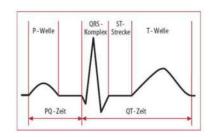
Elektrische Spannung

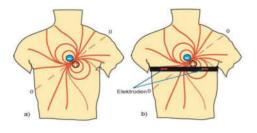
- Die elektrische Spannung entspricht der Potenzialdifferenz zwischen zwei Punkten
- Dies entspricht der Arbeit, die geleistet werden muss, um eine Ladung der Größe 1 C von einem "Punkt 1" zu einem anderen "Punkt 2" in dem elektrischen Feld zu bringen:

$$U_{21} = \frac{W_{1\to 2}}{q} = \varphi_2 - \varphi_1 = \Delta \varphi$$

- Muss gegen das Feld Arbeit verrichtet werden, so ist die Arbeit und auch die Spannung positiv –"Punkt 2" hat also ein höheres elektrisches Potenzial als "Punkt 1"
- Ist die Arbeit und damit auch die Spannung negativ, so hat "Punkt 2" ein niedrigeres elektrisches Potenzial als "Punkt 1"

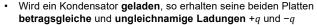
Im Falle eines homogenen Feldes: $U_{21} = \frac{W_{1\rightarrow 2}}{q} = \frac{E \cdot q \cdot s}{q} = E \cdot s$


$$U_{21} = E \cdot s$$


12

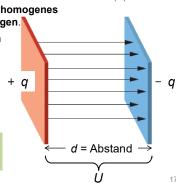
16

Äquipotenzialflächen bei EKG


- Beim EKG werden zwischen verschiedensten Punkten (Elektroden) Potentialdifferenzen gemessen (Ableitungen)
- Sitzen zwei Elektroden auf einer ÄP, so ist die Potentialdifferenz: U = 0 V
- Anhand der gemessenen Potentialdifferenzen und deren zeitlichem Verlauf kann auf die Herzaktivität und pathologische Prozesse zurückgeschlossen werden

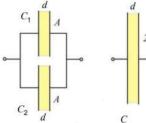
Kondensator

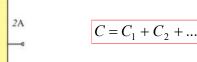
- Ein Kondensator ist ein elektrisches Bauteil, das elektrische Ladung und Energie speichern kann
- In seiner einfachsten Bauform besteht er aus elektrisch leitenden Platten, die gegeneinander isoliert sind (meist durch Luft) und heißt dann Plattenkondensator

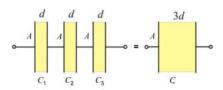


Das elektrische Feld **zwischen** den beiden Platten ist ein **homogenes Feld, außerhalb** der beiden Platten ist es jedoch **inhomogen.**

Die Platten des Kondensators sind Äquipotenzialflächen






Schaltung von Kondensatoren

Parallelschaltung

Reihenschaltung

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

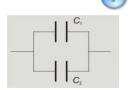
Kapazität eines Kondensators

Kapazität (C):
$$C = \frac{Q}{U} \left(\frac{C}{V} = F \text{ (Farad)} \right)$$

- Je größer die Kapazität, desto mehr Ladung kann bei einer bestimmten Spannung gespeichert werden
- · Die Kapazität kann erhöht werden durch:
 - Vergrößerung der Kondensatorplatten A
 - Verkleinerung des Abstands d zwischen den Kondensatorplatten
 - Erhöhung der relativen Permittivität ε_r durch ein Dielektrikum

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

- Damit ein Kondensator geladen werden kann, muss eine äußere Spannungsquelle Arbeit verrichten
- Die zum Aufladen des Kondensators verrichtete Arbeit speichert der Kondensator in Form von elektrischer Energie

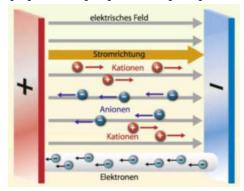

$$W(=E) = \frac{1}{2} \cdot C \cdot U^2$$

Beim Entladen des Kondensators wird diese Energie wieder abgegeben

18

Übung

1. Berechnen Sie die Gesamtkapazität, wenn C_1 = 1 mF und C_2 = 4 mF


2. Berechnen Sie die Gesamtkapazität, wenn C_1 = 1 mF und C_2 = 4 mF

3. Berechnen Sie die Gesamtkapazität von 10 in Reihe geschalteten Kondensatoren mit je 10 mF

Elektrischer Strom

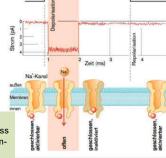
- Ein elektrischer Strom beschreibt einen gezielten und gerichteten Ladungstransport durch eine gegebene Fläche hindurch
- · Voraussetzung dazu: freie (quasifreie) Ladungsträger (bewegliche Ladungsträger)
- · Als Ladungsträger dienen typischerweise Elektronen oder lonen
- · Nicht jede Bewegung von Ladungsträgern ist zwangsläufig ein Strom

Die technische/konventionelle Stromrichtung entspricht der Richtung, in die positive Ladungen fließen: von plus nach minus.

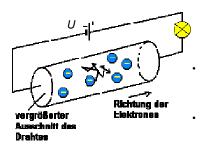
Biologische Wirkung von Strom

- · Der elektrische Strom ruft biologische Wirkungen hervor, die in der Medizin eingesetzt werden, z.B.:
 - · Nerven-und Muskelstimulation
 - Gewebeerwärmung
 - Gewebezerstörung

24


Elektrische Stromstärke

Die elektrische Stromstärke ist definiert als die Ladungsmenge Δa , die während der Zeit Δt durch eine gedachte Querschnittsebene eines Leiters tritt:

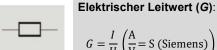

Elektrische Stromstärke (I):

$$I = \frac{\Delta q}{\Delta t} \left(\frac{C}{S} = A \text{ (Amper)} \right)$$

Natrium-lonen, die während des Aktionspotenzials durch Natriumkanäle in der Zellmembran fließen, stellen einen elektrischen Stromfluss dar. Die Anzahl der pro Zeiteinheit durch den Kanal fließenden Natrium-Ionen bestimmt dabei die Größe dieses Stromflusses.

23

Die Bewegung der Elektronen ist nicht unverhindert:


- Kollisionen untereinander
- Kollisionen mit den Atomen des Metallgitters
- Die elektrische Stromstärke ist proportional zur angelegten **Spannung**: $I \sim U$

Ohmsches Gesetz, Widerstand, Leitwert, spez. Widerstand, Leitfähigkeit

Ohmsches Gesetz: $U = R \cdot I$

Elektrischer Widerstand (R):

$$R = \frac{U}{I} \left(\frac{V}{A} = \Omega \text{ (Ohm)} \right)$$

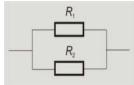
$G = \frac{I}{U} \left(\frac{A}{V} = S \text{ (Siemens)} \right)$

 $I = G \cdot U$

- · Der elektrische Widerstand eines Leiters hängt u.a. von dessen Geometrie ab:
 - Je größer die Querschnittsfläche A, desto geringer ist der Widerstand
 - Je länger der Leiter l, desto größer ist der Widerstand

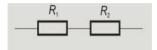
$$R = \varrho \cdot \frac{l}{A}$$

p ist der spezifische Widerstand und ein von der Temperatur abhängiger stoffspezifischer Koeffizient mit einer Maßeinheit von Ω·m


- Der elektrische Leitwert eines Leiters hängt u.a. von dessen Geometrie ab:
 - Je **größer** die Querschnittsfläche A, desto größer ist der Leitwert
 - Je länger der Leiter l, desto kleiner ist der Leitwert

$$G = \sigma \cdot \frac{A}{I}$$

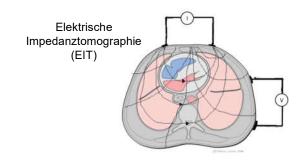
σist die elektrische Leitfähigkeit und ein von der Temperatur abhängiger stoffspezifischer Koeffizient mit einer Maßeinheit von S/m


Schaltung von Widerständen

Parallelschaltung

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Reihenschaltung



$$R = R_1 + R_2 + \dots$$

Hausaufgaben: Grundskript Kapitel 9 und 10

Elektrische Leitfähigkeit in der Diagnostik

Gewebe	σ (mS/m)
Blut	700
graue Hirnmasse	300
weiße Hirnmasse	150
Haut	100
Fett	40
Knochen	10

Impedanzplethysmographie (IPG)

25