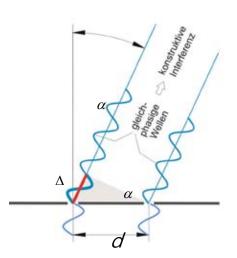

Auflösungsgrenze Lichtabsorption Lichtstreuung

KAD 2021.10.05

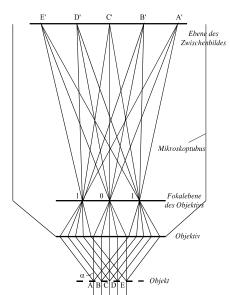
Konsequenzen des Wellencharakters des Lichtes: endliche Auflösung der optischen Instrumenten und des Auges


Beugung ist Wellenlängeabhängig!

Beugung am Gitter

Amplitudengitter

Lichtdurchlässigkeit periodisch ändert und die Periode: $d \approx \lambda$



$$\Delta = d \cdot \sin \alpha_k = k \cdot \lambda$$

(k=1)
$$d \cdot \sin \alpha = \lambda$$

$$\frac{\lambda}{d} = \sin \alpha$$

Auflösungsvermögen des Mikroskops

Ernst Karl Abbe (1840-1905) Mitbegründer der Zeiss-Werke

Abbe Theorie

Bild entsteht im Mikroskop, wenn in der Fokalebene des Objektivs außer dem Hauptmaximum wenigstens auch die Seitenmaxima erster Ordnung entstehen.

$$\frac{\lambda}{d} = \sin \alpha \le \sin \omega$$

∞: Halböffnungswinkel des Objektivs

$$\frac{\lambda'}{d} = \sin \alpha \le \sin \omega$$

$$d = \delta = \frac{\lambda'}{\sin \omega}$$

$$\delta = \frac{\lambda}{n \cdot \sin \omega} = \frac{\lambda}{A}$$

$$\delta = 0.61 \frac{\lambda}{n \cdot \sin \omega}$$

$$f = \frac{1}{\delta}$$

 $\lambda' = \lambda/n$: Wellenlänge im Medium

n: Brechzahl des Mediums

 λ : Wellenlänge im Vakuum,

A: numerische Apertur

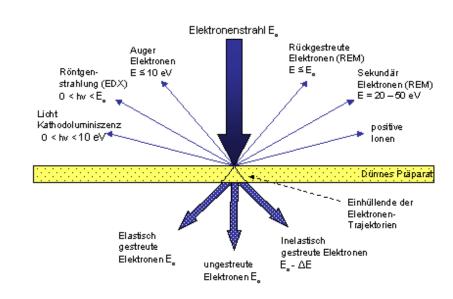
 $d = \delta$: die kleinste auflösbare Entfernung

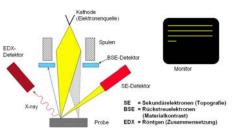
Auflösunsgrenze des Mikroskops (die kleinste auflösbare Entfernung)

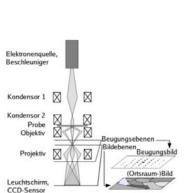
Auflösungsvermögen des Mikroskops

$\lambda_{\rm e} << \lambda_{\rm Licht}$ Elektronenmikroskopie:

kleinere Auflösungsgrenze, grösseres Auflösungsvermögen

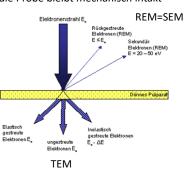

andere


 ${\bf Diffraktions methoden}/ {\tt Beugungsmethoden}:$


Röntgendiffraktion, Elektronendiffraktion, Neutronendiffraktion

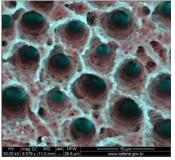
$$\lambda_{\rm Rtg}$$
, $\lambda_{\rm e}$, $\lambda_{\rm n}$ << $\lambda_{\rm Licht}$

Untersuchungsmöglichkeit von submikroskopische Strukturen



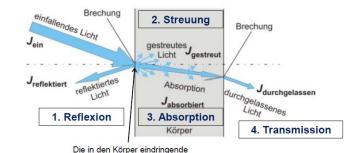
Rasterelektronenmikroskop

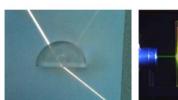
die erzeugte Bilder sind Abbildungen der Objektoberflächen relativ geringere Auflösung die Probe bleibt mechanisch intakt

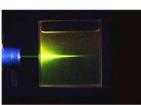


Transmissionselektronenmikroskop

direkte Abbildung von Objekten mithilfe von Elektronenstrahlen bessere Auflösung stark veränderte Probe (sehr dünnes Präparat)

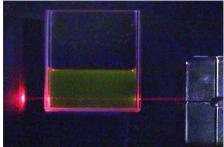

Bakterien auf den Zähnen 30 000 fache Vergrößerung

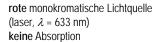


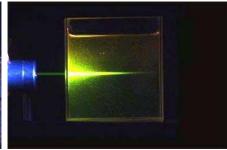

Dentinkanälchen SEM oder TEM?

10

Wechselwirkungen zwischen Licht und Materie

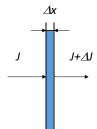





Intensität ist J_0 : $J_0 = J_{ein} - J_{reflektiert}$

Absorption von Licht in einer Lösung

grüne monokromatische Lichtquelle (laser, λ = 532 nm) starke Absorption


es gibt eine Absorptionsfähigkeit die Absorptionsfähigkeit hängt von der Wellenlenge ab

Quantitative Charakterisierung der Absorption

einfachste Situation: sehr kleine (infinitisimal kleine) Schichtdicke

(Parallelstrahl, senkrecht fällt auf ein Medium)

J: die eintretende Intensität

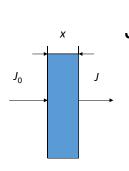
∧ **J** : Veränderung der Intensität (<0)

 $m{J} + \Delta m{J}$: die ausretende Intensität

$$\Delta \boldsymbol{J} = -\mu \; \boldsymbol{J} \; \Delta \boldsymbol{x}$$

differenzierte Form des Schwächungsgesetzes

 μ : charakterisiert das Medium (Schwächungsfaktor)


$$\left(\frac{\Delta J}{\Delta x}\right) = -\mu \left(J\right)$$

Veränderung (*genauer:* die Ableitung) einer Funktion (*hier:* Intensität) proportional zur Funktion (Intensität)

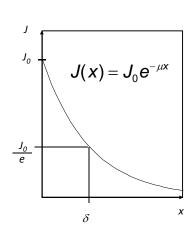
13

$$\frac{\Delta J}{\Delta x} = -\mu J$$

Lösung dieser (Funktions)gleichung/Differentialgleichung:

 $J = J(x) = J_0 e^{-\mu x}$

das Schwächungsgesetz

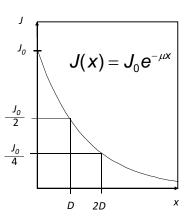

 J_0 : die eintretende Intensität

J: die austretende Intensität

μ: der (lineare) Schwächungskoeffizient (Schwächungsfaktor, Absorptionskoeffizient), Einheit: 1/m, 1/cm

14

Graphische Darstellung des Schwächungsgesetzes


Einheit von μ : 1/m, 1/cm δ =1/ μ , δ : eine spezielle Schichtdicke

$$J(x) = J_0 e^{-\frac{x}{\delta}}$$

$$J(\delta) = J_0 e^{-\frac{\delta}{\delta}} = J_0 e^{-1} = \frac{J_0}{e}$$

δ: die Schichtdicke nach welcher sich die Intensität der Strahlung auf den *e*ten Teil vermindert

Die Halbwertsdicke

D: die Schichtdicke nach welcher sich die Intensität der Strahlung halbiert

$$J(D) = J_0 e^{-\mu D} = \frac{J_0}{2}$$

$$e^{-\mu D} = \frac{1}{2} = 2^{-1} \qquad e^{+\mu D} = 2$$

$$\mu D = \ln 2, \qquad \mu = \frac{\ln 2}{D} = \frac{0.693}{D}$$

$$J(x) = J_0 e^{-\frac{0.693}{D}x}$$

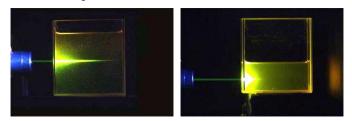
Optische Dichte = Extinktion = Absorbanz OD

Absorption	$\frac{J}{J_{0}}$	$\frac{J_0}{J}$	$lg \frac{J_0}{J}$
k(I)eine $(J=J_0)$	1 = 100 %	1	0
grosse (J=0)	0	8	8
	Durchlässig- keit		Absorbanz
	wichtige Grösse	keine Bedeutung	wichtigste Grösse

17

Schwächungskoeffizient

$$\Delta \mathbf{J} = -\mu \ \mathbf{J} \ \Delta \mathbf{X},$$


$$\mu = \mu$$
 (Medium; Strahlung) = $\mu(Z, c; \lambda)$,

wo Z: die (effektive) Ordnungszahl des Mediums/der Lösung

c: die Konzentration der Lösung

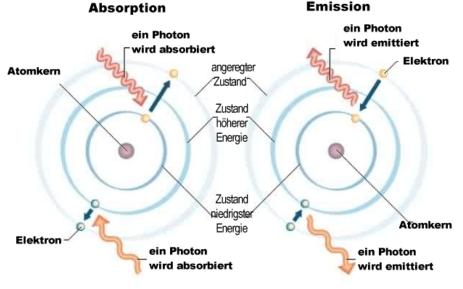
λ: die Wellenlänge

für dünne Lösungen: $\Delta J \sim c \rightarrow \mu \sim c$

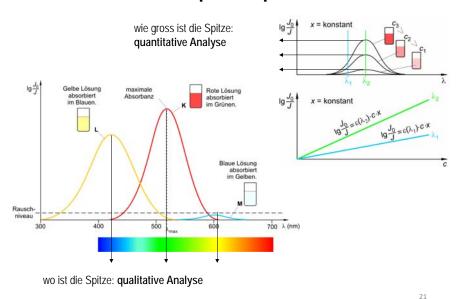
Lambert-Beersches Gesetz

$$J = J_0 e^{-\mu x}$$
 $J_0 = J e^{+\mu x}$ $\frac{J_0}{J} = e^{\mu x}$

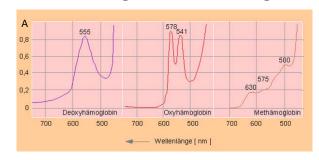
$$J = J_0 e^{-\mu x} \qquad J_0 = J e^{+\mu x} \qquad \frac{J_0}{J} = e^{\mu x}$$


$$\lg \frac{J_0}{J} = \mu x (\lg e) = \left((\lg e) \frac{\mu}{c} \right) c \ x = \varepsilon c \ x$$

Gültigkeit: für dünne Lösungen

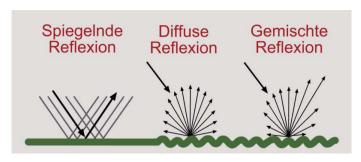

der (dekadische molare) Extinktionskoeffizient: $\varepsilon = \varepsilon(Z;\lambda)$

wichtig: nicht hängt von der Konzentration ab


Atomare Grundlagen der Absorption und Emission

Absorptionsspektrum

Bestimmung des Sauerstoffgehaltes von Gewebe



Photopolymerisation, Lichthärtung

Lichtreflexion

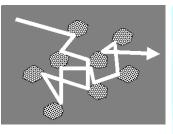
an glatten Flächen $(\alpha=\alpha')$

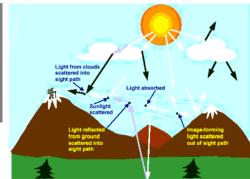
an rauhen Flächen an glänzenden Flächen

Reflektanz:

 $\rho(\lambda) = \frac{J_{reflektierte}}{J_{e int retende}}$

 $\rho = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$


durch Lichtstreuung wird gerichtetes Licht in diffuses Licht verwandelt


Lichtstreuung

Ablenkung des Lichtes an kleinen Teilchen oder rauhen Oberflächen. Inhomogenitäten in der Grössenordnung der Wellenlänge des Lichtes streuen Licht

räumliche Inhomogenitäten – elastische Lichtstreuung

 $\textbf{zeitliche} \ Inhomogenit \"{a} ten/Fluktuationen - \textbf{inelastische} \ Lichtstreuung$

Reflexionsspektrum: s. Physikalische Grundlagen der Zahnärztlichen Materialkunde $_{\scriptscriptstyle 23}$

Elastische Lichtstreuung

spektraler Streuungskoeffizient

$$\sigma(\lambda) = \frac{J_{\text{gestreut}}}{J_{\text{einfallend}}}$$

Rayleigh-Streuung

Wechselwirkung mit Moleküle deren Durchmesser viel kleiner als die Wellenlänge ist (d <0.1 λ).

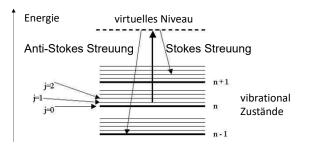
$$\sigma_{
m Rayleigh} \sim rac{{\cal O}^6}{{
m λ^4}} \hspace{1cm} {
m sehr starke} \ {
m Wellenlängenabhängigkeit}$$

Diese Rayleigh-Streuung ist für den blauen Himmel und das rötliche Licht am Morgen und am Abend verantwortlich

der Durchmesser der Partikel ist in der Grössenordung der Wellenlänge (0.1 λ < d < 10 λ)

sehr geringe Wellenlängenabhängigkeit

nicht-selektive Streuung


alle Wellenlängen werden ungefähr gleich beeinflusst Durchmesser der Partikel ist viel grösser als die Wellenlänge (d > 10 λ).

Nichtelastische Lichtstreuung: Raman-Streuung

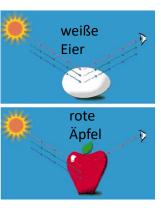
Sir Raman in unserem Institut (1961), Nobel-Preis (1930)

bei der Raman-Streuung werden Moleküle durch das ausgesendete Laserlicht in andere Vibrations- und Rotationszustände versetzt. Die Moleküle nehmen hierbei einen Teil der Lichtenergie auf bzw. geben einen Teil ihrer Energie ab; die Wellenlänge des rückgestreuten Lichts wird durch die Streuung geändert

die Intensität des inelastisch gestreuten Lichts ist um 2 bis 3 Größenordnungen geringer als das elastisch an den Molekülen rückgestreute Licht

Farbe von Gegenständen, sehr komplex:

Reflexion + Streuung + Absorption



C: cyan M: magenta Y: yellow = gelb

