
Structure of matter, matter wave, atomic and 

molecular interactions. Atomic force microscopy. 

Myofilament Mechanobiophysics Research Group,

Department of Biophysics and Radiation Biology,

Semmelweis University

06. October 2021.

Balázs Kiss

kissb3@gmail.com



2

Atomic models - History
Textbook: pages 23-37

• Democritus (~400 BC): proposition of atomic structure („atomos”: indivisible)

• Dalton (1803): stoichiometric law: elements consist of identical constituents

• Thomson (1897): discovery of electron (cathode rays) 

• Rutherford (1909-1911): nucleus (nucleons: p+ and n0) and electrons

• Bohr (1913): discrete energy states
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Thomson and Rutherford

Thomson: discovery of cathode rays

gas discharge tube
rays moved from the 
negative electrode to 
the positive electrode

„plum pudding atom” or

„blueberry muffin atom”

Rutherford: experiments with α-particles

atoms are 
made of a small 
positive 
nucleus

atoms are mostly empty space

the nucleus 
carries most of 
the atom’s 
mass

„planetary model”

rays could be deflected 
towards the + plate
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Bohr and Schrödinger

Bohr: describing the electron shells

Schrödinger: quantum mechanical model of the electrons

• electrons furthest from
the nucleus have higher
energy

• absorbing energy: jump from a lower
orbit to a higher

• losing energy: emission of photons

Emission spectra of certain elements

Complex shapes of orbitals:

electron clouds
• no exact path, rather predicts the odds of the location of the electron
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How are stable structures created/formed? 

165 000 000 000 x

Governing principle:

repulsive

interaction

attractive

interaction

?

macroscopic scale: Atomium nanoworld: face-centered cubic lattice of Fe

consequence:

DISORDER

consequence:

ORDER
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Fundamental interactions in physics

GravitationCoulomb-interaction

Interaction type Binding particle Range (m) Relative strength

gravitation every particle infinite (~1/r2)
10-40

electrostatic (Coulomb) charged particles infinite (~1/r2) 10-2

strong nuclear nucleons 10-15 1

weak nuclear every particle 10-18 10-13
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Electric potential energy (Epot)

QB

positive charge

(fixed)

QA

How much energy is needed to separate the negative charge?
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changes continuously!

rpot WE 

the negative 
charge is 

transported into 
infinite

Electric 

potential energy:

attraction

repulsion

r1



Structure of the Atom

K L M shells

nucleus, including:

• protons (p+)

• neutrons (n0)
nucleons

electrons

eZQ
etotal,



Z: atomic number

(number of protons)

N: neutron number

A: mass number

(=Z+N)

eZQ nucltotal, 

Epot r

QQ
k BA Ekin

2mv
2

1

kinpottotal EEE 

Etotal < 0: bound electron

Etotal > 0: free electron

e-
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nucleus

datom~0.1 nm

kinetic energy potential energy



The energy states of the electron

discrete

(quanted)

continuous

an electron’s possible energy

levels in the hydrogen atom

n: principal quantum number

shells
s: sharp;

p: principal; 

d: diffuse;

f: fundamental. 

s

p

d

f

0

1

2

3

l: azimuthal quantum number

subshells

• Principle of minimum energy

• Pauli exclusion principle

see „Light emission” 
lab practical
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m: magnetic quantum number

0-1 1



Particle-wave duality of the electron 
cf. particle-wave duality of the photon

wave

particle

charge

(Millikan, 1910)

e = -1.6·10-19 C

mass
(Thomson, 1897; mass-to-charge ratio) 

me = 9.1·10-31 kg

diffraction of fast electrons

through a gold foil

Davisson and Germer, 1927
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electron 
microscope

e- beam is bent due to 
the presence of
magnetic field



The electron as a wave

Analogy: stationary waves of a stretched string

l: length

2

λ
kl k 1,2,...k 

only discrete values 
are allowed!

De Broglie, 1923
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λ: wavelength of the

matter wave

The state function of the electron:

ψ(x,t)

(Schrödinger)

• location (x): where ψ(x,t)=1

• momentum (p): ”shape” of ψ(x,t) 11

antinode
node node



The propagation law of free electrons 

Classical mechanics: state of motion

position of a classical object can be determined exactly the state function of the electron

v1

v2
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ψ(x,t) will disperse 
while propagating

the state function is 
not a periodic function

wave package

Propagation of electrons as wave package



The electron bound in an atom
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in the electric field of the 
atomic nucleus (or proton)

The Heisenberg uncertainty relation

the uncertainty of the momentum (Δp) in the 

case of a free electron:

hΔpΔx 

hΔtΔE 

Δx

deformed state function

”one-dimensional H-atom”

Δt: uncertain, so E can be certain: 

discrete energy levels

Δp ~ Δ(1/λ)  

Δ(1/λ) ≥ 1/Δx



Atomic interactions

nucleus

inner shell

outer shell

attraction

(outer shells)

repulsion

(inner shells and nuclei)

equilibrium

attraction = repulsion

long range

interaction:

coulombic attraction

short range

interaction:

repulsion between

nuclei
(electron cloud overlap)
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Textbook page 44-51



Atomic interactions

A, B: interaction-specific constants

(atom-dependent)

n (attraction) < m (repulsion)

r0: binding distance

Eb: binding energy

mnpot

repulsionattractionpot

r

B

r

A
E

EEE





repulsive

attractive
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Eb



Primary bonds

intramolecular intermolecular

strong weak

primary secondary

• covalent: common electron state around the 

participating nuclei, strong: Eb > 1eV

• metallic bond: multi-atomic system, Eb > 1eV

• ionic bond: Coulomb-forces between ions, Eb > 1eV

type depends from 

electronegativity 
(EN)

EN values according to
Pauling
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EN = │Ei │+ │ Eea │

ionization

energy

electron-

affinity

„tendency of an atom 
to attract electrons”



Secondary bonds 1

• Van der Waals: between two apolar atoms (without permanent dipole moment)

where a temporarily created dipole interacts with an apolar molecule or atom thus 

converting it into a dipole (induced dipole)

• Van der Waals radius: r0=rA+rB

• Intermolecular or intramolecular

• Important biological role: formation of organic structures

• Weak: (Eb ~ 0,02 eV)

induced dipoleion-dipolefluctuation

17



Secondary bonds 2

• Dipole-dipole interaction:

• constant charge distribution 

is present in a (given part of 

a) molecule

• partially (+) and (-) segments 

are held together by 

electrostatic interactions 

(Coulomb-forces)

• intra-/intermolecular

• weak interaction (Eb = 0.003-

0.02 eV)
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Eattraction = p * E

p: dipole momentum (p=Q*d)

E: electric field strength generated by the 

surrounding partners



Secondary bonds 3

• H-bond: the H-atom interbridges two other 

atoms (F, O, N) of high electronegativity

• r ~ 0.23 - 0.35 nm

• E ~ 0.2 eV

• Hydrophobic interaction: weak Van der Waals 

interaction (Eb = 0.003 - 0.02 eV), thermal 

motion (kT ~ 0.025 eV) could disrupt the 

system

• ordered water molecules exclude the 

apolar structures (contact surface can be 

minimized)

DNA water

19

lipids in water



Atomic force microscope (AFM)
Textbook page 573
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1. Van der Waals

interaction is measured

between the atoms of a 

sample and a sharp tip

atomically smooth 
surface (mica) 

2. The tip is deflected due to 
the Van der Waals forces.

4. The cantilever is scanned in 
X-Y-Z directions: atomic 

resolution with raster scan.

3. The deflection is 
measured with a 

laser reflected 
onto a position 

sensing 
photodiode.



AFM operating modes

cantilever

tip

sample

sample surface

• Contact: the tip touches the surface, the
deflection of the cantilever (i.e. the force
exerted on the sample by the tip) is held
constant.

• Z-feedback system: deflection is
maintained at a constant value
(setpoint) by lifting or lowering the
cantilever.

• topography data (i.e.: height) in each
x;y point is calculated from these Z
movements

• Non-contact: the cantilever is oscillated
without contact with the surface: resonant
frequency (f0) and the amplitude of the
oscillation changes with surface
topography.

• Z-feedback: maintains the amplitude
by lifting or lowering the oscillating
cantilever.

contact

non-contact

21
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Contact mode AFM

contact



Contact mode AFM
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U1

laser

position sensing

photodiode

U0

d ~ force

suitable for soft 
biological samples 

(e.g. cells)

force / elasticity 
measurement on 

biological samples

F = D · d

d: deflection
D: spring constant



Practice: Resonance

Resonance

24

Resonance: a driven oscillation occurring when the oscillatory system is exposed

to a driving force with a frequency close to its eigenfrequency (f0). Amplitudes may

become extremely large.

Free oscillation Driven oscillation



Practice: Resonance

Non-contact/oscillating mode AFM
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Resonance: a driven oscillation occurring when the oscillatory system is exposed

to a driving force with a frequency close to its eigenfrequency (f0). Amplitudes may

become extremely large.

Resonance curve



Non-contact/oscillating mode AFM model
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N.B.: magnetic interaction models the Van der Waals forces



Non-contact/oscillating mode AFM
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Cantilevers

• Material: mainly silicon nitride 

• Tip radius: 0.1 nm - 100 µm

• Spring constant ~ 0.1 - 10 N/m

• fo ~ 50-500 kHz

28



Principle of X-Y-Z raster scanning: piezoelectricity

• direct piezoelectric effect: deformation → voltage

• inverse piezoelectric effect: voltage → deformation

• X, Y, Z axis piezo: e.g. 150 V → 40 µm

29

0.1-nm-accuracy 

possible



AFM - properties
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• Main advantages:

• 3D surface profile.

• Images are collected with ~10 pm vertical and somewhat worse horizontal 
resolution.

• Any surfaces (conductors, insulators and semiconductors) can be imaged.

• Works in ambient air, special gas or in fluid environment as well.

• Usually does not require fixation or staining of the sample.

• Biological samples can be examined in their native state and physiological 
environment.

• Main disadvantages:

• Samples must adhere to a substrate. Surface adhesion may lead to distortion.

• Slow scan speed.

• Scan height limited to few microns („the flatter the better”).

• Scan size limited to few tens of microns.

• High cost.



Images recorded in our lab at the Department

500 nm

200 nm

AFM cantilever

AFM tip
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Native SARS-CoV-2 imaged in our lab
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bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.302380



Pentacene molecule

AFM images (tip covered with CO)

electron current through the tip (STM)
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Nature Chemistry 1, 597 - 598 (2009)



Visualizing chemical reactions
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Thank

you

for your attention!

???!!?!


