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Generation of light

Thermal radiation and Luminescence

Zsolt Martonfalvi

Thermal radiation

The temperature of the two bodies will become equal with time
< even in vacuum!
(no convection or conduction between them)

! Consequently:

All bodies emit radiation independently of the temperature of their
_ surroundings. The emitted radiation is always electromagnetic
- radiation.

Quantitative description of thermal radiation:

* Radiant emittance (M)
_ AP [W
M=z=[

* Absorption coefficient (a) M and a strongly depend on the

o = Jabsorbed by the surrace 0 < o < 1 absolute temperature of the body!

Jrecived by the surface

Kirchhoff’s law

Bodies that emit more also absorb more. The ratio between
radiant emittance and absorption coefficient is constant within a
narrow range of wavelength (1):

M/l body1l _ M/l body?2

= constant
a2 body1 a2 body2
M, a; ) Stronger emission,
/ more absorption

Weaker emission,

less absorption ||

The ideal black body

A theoretical body that is used as a model in the description of thermal radiation.
It absorbs all radiation that falls on it:
Qplack body = 1

thus we can calculate any real body’s radiant emittance if we know its absorption
coefficient (ay;):

My = aaiMj piack boay

The hole on a dark cavity approximates an ideal black
7 body

The radiant emittance of a black body depends strongly
on the absolute temperature!

Stefan’s law:

w
m2K*

M=0cT* 0=5.67-10"8
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The ideal black body

The emission spectrum of the black body is continuous.
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Wien’s displacement law:

AmaxT = constant

T1<To<T3<T4

Max Planck’s radiation law:

The radiation energy of a black
body is emitted in discrete integer
multiples of a fundamental
“package”, the quantum.

E = hf

>y

h=662-10734]s

Light sources based on thermal
radlatlon Hot objects
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Sun light

Spectrum of Solar Radiation (Earth)
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Medical applications

Telethermography
Measures the radiant emittance of thermal radiation of
the human body.
Human body: 4,4, = 10 um (infrared)
o = 0.95 (95% of ideal black body)

Radiant emittance strongly depends on temperature!

(@

Diagnosis  of inflammations,
cancer, circulatory defects that
cause the change in local
temperature.

Medical IR scanner




Medical applications
Non-contact thermometry

1 °C of temperature difference will increase the intensity by ~1.5% at the
emission maximum!
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Luminescence

Spontaneous emission of a photon due to the relaxation of an excited electron.
Phases of luminescence:

* Absorption of external energy

* Excitation

« Emission of energy in the form of electromagnetic radiation

Types of luminescence

Fluorescent dyes Bioluminescence

Phosphorescent dial Radioluminescence - scintillation
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Light Photoluminescence Fluorescent lamp
Electric Electroluminescence Na-lamp
Radioactive Radioluminescence Nal (T1) (scintillator)
Mechanical Triboluminescence (Percussion, friction)
Biochemical Bioluminescence firefly
Thermal Thermoluminescence CaS0y4 (Dy) (dosimeter)
S1 — So (fast) Fluorescence Fluorescein
T1—So (slow) Phosphorescence Phosphorous
10
Luminescence emission of atoms has a line spectrum.
c .; E;
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SN Eppoton = E; —Ey = hf
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Luminescence of molecules

Discrete energy levels split into vibrational levels.

The energy of a molecule is the sum of

v —=————— Vibrational its el.eclron'\c—, \./i?rational,.and
— rotational transition energies. :

E»

» levels
A A Etotat = Ee + Ey + E;
INAAA P/
SN Molecular vibrations:
f=————— }Vibrational (2 examples)
E; xS levels K , K ,
atoms molecules PN 1§
Luminescence of molecules has Spin states of excited electrons
band spectrum
é Singlet state (S) Triplet state (T)
5 Sum of spin quantum Sum of spin quantum

numbers is S =0 (+1/2,-1/2) numbersis S =1 (+1/2, +1/2)
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Luminescence emission of molecules

Jablonsky diagram

vibrational intersystem
E relaxation crossing
Sl N, N ;:
L
T T
/Il
s Kasha’s rule: The excited
c g .
2| I~ = %% molecule first reaches
i) emission 5 / emission the lowest vibrational
EES g ;
g v 7 level of S; and photon
emission occurs always
£ from this state to any
> . .
So / vibrational level of the
\ ground (So) state.
Fluorescence Phosphorescence
S12So T1>S0

14

Luminescence emission of molecules

Quantum yield (Qf):

_ kg _ number of photons emitted
Q= k; +k,, number of photons absorbed

Lifetime (7):
‘ -
N=NyeF excitation

1
T = e
Ky + ko

kj: Rate of photon producing transitions

Number of excited electrons

k,,,-: Rate of non-radiative transitions

A % Magnetic moment of spin state: 25 + 1
PV
13
Jablonsky diagram
S
A9 vibrational intersystem
E relaxation crossing
S1 - .~ ’—— T
B
Lifetimes: (1)
e 109s .E 7 10%-10s Excitation: femtosecond
S (8 AN~ B A
S emission g g GIEREl Vibrational relaxation:
2 v / picosecond
"', Fluorescence emission:
So \2 J nanosecond
Fluorescence Phosphorescence Phosphorescence emission:
S1>S0 T1>So microsecond to seconds
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Stokes shift

The shift between the emission and excitation spectra
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Comparing emission processes

_ Fluorescence Phosphorescence

Relaxation From singlet state From triplet state

S$1~>So0 T1>So
Lifetime Nanoseconds From microseconds up
to seconds

Larger (because T is at
lower energy than S;)

Stokes shift  Smaller
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i i i
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Measurement of luminescence

Luminescence spectrofluorometer

Spectrum recorded
while the emission
wavelength is varied

Spectrum recorded
while the excitation
wavelength is varied
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Aem= constant Photo detector
(excitation maximum)

(emission maximum)
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Applications - FRET

Forster Resonance Energy Transfer

Energy transfers from donor without emission to acceptor in diploe-diploe
interactions. Requires spectral overlap between donor emission and acceptor
absorption.

Donor Acceptor

> Ex Em Em
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£
Ao, Spectraloverlap 3
FRET efficiency or quantum yield (E): o0

“Molecular ruler”
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Forster Distance

FRET Efficiency
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Applications - FRAP ...

(molecular detail, not to scale)
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Fluorescence Recovery After A
Photobleaching
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Photobleaching: The permanent loss of B

fluorescence due to photochemical
reactions.
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Fluorescence microscope

tungsten lamp exciiaion
Aty filter
(wh{te light) (e.g. blue)

collimating
lens

strong scattered

excitation light

specimen

detector

fluorescent

light

eyepiece

emission filter
(e.g. green)

dichroic mirror
(e.g. blue is reflected,
green is passed

through)

weak, emitted

—_ fluorescent light

Biomedical applications

Fluorescent transgenic animals Fluorescence guided surgery

Surgeon’s forme

. .

View of localized region in peritoneal cavity of an ovarian cancer patient as seen

with the naked eye (left) or with the aid of a tumor-targeted fluorescence dye (right).
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