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A Dbrief history of microscopes

« 1st century: Romans were looking through glass and testing it
 1600s: Zacharias Jansen — first telescope/compound microsope
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* 1667: Robert Hooke — ,,Micrographia” , cells of cork
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« 1674: Antonie van Leeuwehoek — make simple microscopes, 270 X magnification
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 Early 1800s
* Carl Zeiss — buisnessman in Jena — development of high quality microscope
 Ernst Abbe — He put the production of optical devices on scientific bases

Ernst Abbe (1840-1905) Carl Zeiss (1816-1888)

Microscope by Carl Zeiss (1879) with optics by Abbe



Fundamentals of wave optics
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Resolution limit of microscope

1873: Ernst Abbe — resolution limit of light microscope

Abbe’s principle: An optical system can resolve only those details of the
specimen, which diffract light rays in a way that besides the principal

maximum at least the first order diffraction rays are allowed to contribute to the
Image formation.
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Alry disks — the evidence of wave character of light

The Airy disk is descriptions of the
best-focused spot of light that a
perfect lens with a circular aperture
can make, limited by the diffraction
of light.

Formation: the waves in same phase
produce diffraction maximum (left)
while the waves shifted by 180°
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How can we distinguish two Image points?

QO

not resolved well resolved just resolved

Rayleigh criterion:
Objects may be resolved if their corresponding Airy disk do not overlap.
Just resolved: principal maximum of one image point coincides with the first order minimum of the other



Fluorescence microscope

Jablonski diagram
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Kasha’s rule: light emission emanates from the relaxation of the
lowest vibrational level of the first excited state to ground state.



Fluorescence

Spectral Intensity [W/sr/nm/1000cd]
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absorbance, A (rel. unit)

Absorption and emission spectrum
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Source of fluorescence

* Intrinsic fluorophores:

tryptophan, tyrosine aminoacids (aromatic)
porphyrins

 Extrinsic fluorophores:
fluorescent dyes

The perfect fluorescent dye:

« Small

Hydrofil

Can be excited in the visible range
Large Stokes-shift
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Fluorescent proteins

 Green Fluorescent Protein (GFP)
« first isolated from jellyfish (1960s)
« ~27 kDa, 238 aa, 11 strands B-barrel structure

* the central alpha helix contains the chormophore: Ser-65,
Tyr-66, and Gly-67

« excitation: blue (475 nm) and UV (396 nm) light
 emission: 508 nm

 Used as tagging protein

 Small size — has no effect on the funcion of examined
protein

* Transfected cells
* Transgene animals: all cell express the GFP




Frog muscle cells Tumor cells



2008. Nobel prize in chemistry
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General properties of lasers

light amplification by stimulated emission of radiation

* monochromatic
* coherent

* polarized

» parallel, collimated beam

Possibility of very short pulses — ps, fs

Possibility of high power — kW - GW

Penetration of light into the skin

UV-C UV-B UV-A VIS IR
1200 10600 nm
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i { s LSub-ctham:mls structure

Light intensity is attenuated due to absorption, reflection,
refraction.

Penetration depth depends on the wavelength.



Confocal laser scanning microscope

Confocal concept: a focused laser beam is used
to produce a small spot illumination on the
specimen, and a pinhole in front of the detector
eliminates out-of-focus signal

 laser beam — focused illumination
« excitation filter — selected wavelenght

* point-by-point scanning
« motorized XY scanning
 ,optical sectioning”

« 3D Imaging
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Comparison the imaging of fluorescence and confocal microscopes

Confocal and Widefield Fluorescence Microscopy
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Two-photon mlcroscopy

1931. Maria Goppert-Mayer

In the excited molecule two photons absorb
simultaneously

femtosecond laser source ~ high flux of
excitation photons
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Light absorption and emission spectrum

One photon excitation Two photon excitation
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« excitation only in a tiny focal volume — v

« tunable laser source — infrared spectral range

reject out-of-focus
low laser power — in vivo imaging

(700-1300 nm) — reduced scattering
deep penetration

effective signal detection

optical sectioning — 3D imaging
Imaging without labeling

Advantages
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Impulse lenght: 100 fs
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Label-free imaging
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3D Imaging

Comparison the dermal collagen structure of a control and type 2 diabetes affected mice

Optical sectioning,
z=380 um

200 pm x 200 pm
exc: 990 nm




Multiple fluorescent labeling

renal cortex collecting ducts and JGA cells

green: quinacrine (renin-positive granules), Hoechst 33342 (nuclei), and autofluorescence; red: 70 kDa rhodamine dextran (vasculature).



How big are things?

1 mm 100pm

lllustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences



Superresolution microscopy

The Royal Swedish Academy of Sciences has decided to award the

2014 NOBEL PRIZE IN CHEMISTRY
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Eric Bet21g, Stefan W. Hell
and Wllham E. Moerner

“for the development of super-resolved fluo nee nicroscopy”



Superresolution microscope

2014. Eric Betzig, Stefan W. Hell és William E.
Moerner were awarded Nobel-prize in chemistry

STED: stimulated emission depletion microscopy

2018. August — STED device arrived in our Institute

allows for images to be taken at resolutions below the

diffraction limit S, ="
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STED selectively deactivates the fluorescence 1 % -
Exc Fluor. o B
The excited electron is forced to relax into a higher
vibration state than the fluorescence transition would - !
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excitation laser: produces an ordinary diffraction limited
focus

depletion laser: doughnut shape, fluorescence from the
molecules Is quenched via stimulated emission

point-by-point scanning

Regular optical
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Vimentin: flexible intermediate filaments in the cytosceleton

confocal STED




Nuclear pores of HeLa cells

confocal




Checklist

v resolution limit of image formation
v' Abbe’s principle

v working principle of fluorescence microscope: illumination, excitation/emission
spectra, Stokes-shift, function of dicroic mirror

v" sources of fluorescence: intrinsic, extrinsic
v GFP protein
v" working principle of confocal microscope: illumination, function of pinhole

v working principle of two-photon microscope: properties of laser source,
excitation/emission spectra, penetration ability, advantages

v" superresolution microscopy: principle of STED imaging



