Transportprozesse 1. Strömung von Gasen und Flüssigkeiten

KAD 2022.03.22

- •Elektrischer Ladungstransport (elektrischer Strom)
- •Volumentransport (Strömung von Flüssigkeiten und Gasen)
- Strofftransport (Diffusion)

- Themen •Wärmetransport (Wärmeleitung)
 - •Allgemeine Beschreibung von Transportprozessen
 - •Energetische Beziehungen der Transportprozessen

Kirchoffsche Gesetze

1. Kirchoffsches Gesetz: Knotenregel

 $I_1 + I_2 + I_3 + I_4 = 0$

(Wiederholung)

2. Kirchoffsches Gesetz: Maschenregel

(Summe der Spannungen in einer Masche

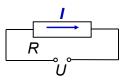
ist 0.)

Ohmsches Gesetz: $U = R \cdot I$

 $I = \frac{\Delta Q}{\Delta t}$

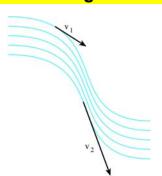
Spannung = Widerstand · Stromstärke

 $R = \rho \frac{\Delta \ell}{}$

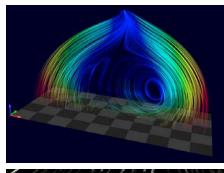

 $[I] = \frac{C}{s} = A \text{ (Amper)}$

 $[U] = V; [R] = \Omega$

 $U = \rho \frac{\Delta \ell}{\Delta} I$

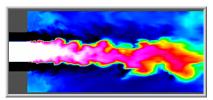

spezifischer Widerstand

Querschnittsfläche


spezifische Leitfähigkeit elektr. Potentialdifferenz

Stromlinien, **Strömungsbild**

Die Richtung der Strömungsgeschwindigkeit wird von der Tangente der Stromlinien in einem gegebenen Punkt, die Höhe der Geschwindigkeit wird von der Dichte der Stromlinien angezeigt.


Lehrbuch, Abb, III.1

Einige Grundbegriffe

stationäre Strömung: zeitunabhängig

laminare

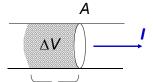
$$V \leq V_{krit}$$

$$V > V_{krit}$$

$$\left(v_{krit} = \text{Re} \cdot \frac{\eta}{\rho \cdot r} \right)$$

5

(Quasi-) Iaminare Strömungen



Volumenstromstärke (Strömungsintensität, I)

$$I = \frac{\Delta V}{\Delta t}$$

$$[I] = \frac{m^3}{s}$$

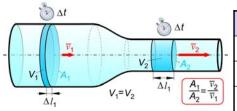
$$I = \frac{\Delta V}{\Delta t} = \frac{A \cdot v \cdot \Delta t}{\Delta t} = A \cdot v$$

Messmethoden der Volumenstromstärke Anwendung: Blutströmung

Impedanz-Methode

Ultraschall-Doppler

Laser-Doppler

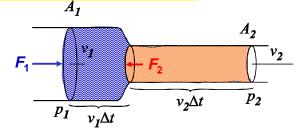

Dilutionsmethoden

- Fluoreszenzfarbstoffe
- Radioisotope
- kalte phys. Salzlösung

Das Grundprinzip der **Dilutionsmethode** besteht darin, dass ein detektierbarer Indikator in die Blutbahn eingespritzt und dann die Konzentration des verdünnten Indikators in einem späteren Abschnitt der Blutbahn gemessen wird.

Kontinuitätsgleichung (folgt aus dem Massenerhaltungssatz)

•		1
١.	=	1.


$$A_1 \cdot \overline{V_1} = A_2 \cdot \overline{V_2}$$

Gefäß	A (cm ²)	v (cm/s)
Aorta	4	30
Arterien	12	10
Arteriolen	600	0,2
Kapillaren	3000	0,04
Venolen	1000	0,12
Venen	30	4

9

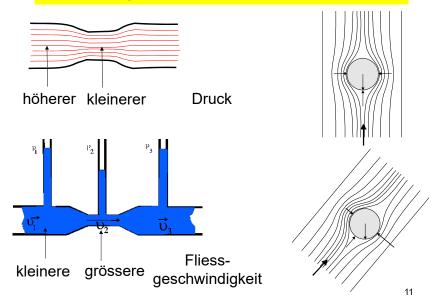
Ideale Flüssigkeiten

innere Reibung =0 !

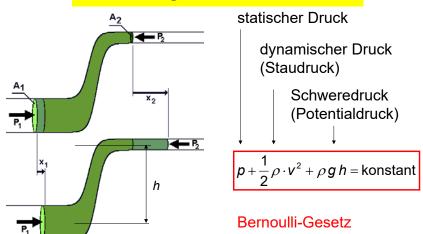
$$W = \Delta E_{kin}$$

$$p_1 \cdot A_1 \cdot v_1 \cdot \Delta t - p_2 \cdot A_2 \cdot v_2 \cdot \Delta t = \frac{1}{2} (\rho \cdot v_2 \cdot \Delta t \cdot A_2) \cdot v_2^2 - \frac{1}{2} (\rho \cdot v_1 \cdot \Delta t \cdot A_1) \cdot v_1^2$$

$$p_1 - p_2 = \frac{1}{2} \rho \cdot v_2^2 - \frac{1}{2} \rho \cdot v_1^2$$

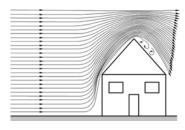

$$p_1 + \frac{1}{2}\rho \cdot v_1^2 = p_2 + \frac{1}{2}\rho \cdot v_2^2$$

$$p + \frac{1}{2}\rho \cdot v^2 = \text{konstant}$$

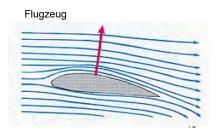

Bernoulli-Gesetz

10

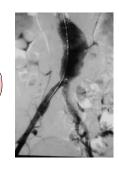
Konsequenz des Bernoulli-Gesetzes


Strömung im Graviationsfeld

Die Summe aus Potential-, Stau- und statischem Druck ist überall gleich


Anwendungen der bernoullischen Gleichung

Strömung über ein Hausdach

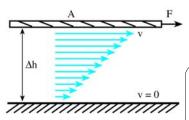


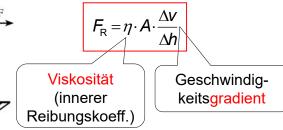
Ärztliche Konsequenzen des Bernoulli-Gesetzes

 Entstehung von Aneurysmen

Erweiterung \rightarrow langsamere Strömung \rightarrow erhöhte Druck \rightarrow Erweiterung \rightarrow

Plasma "skimming"


Der Druckunterschied "treibt" die Erythrozyten von der Wand zur Rohrmitte hin. (Abb. S. später)


14

Reelle Flüssigkeiten

innere Reibung!

Newtonsches Reibungsgesetz:

$$[\eta]$$
 = Pa·s

Viskosität (Innerer Reibungskoeffizient)

hängt von mehreren Faktoren ab:

• Temperatur

$$\eta \sim e^{\frac{\Delta E}{RT}}$$

Newtonsche (normale) Flüssigkeit

· Geschwindigkeitsgradient

nicht-Newtonsche (anomale) Flüssigkeit

Flüssigkeit	η [mPa s]
Quecksilber	1.554
Diäthyläther	0.24
Benzol	0.648
Wasser	1
Blut	4
Rizinusöl	990
Glycerin	1480

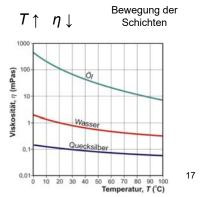
Viskosität für verschiedene Flüssigkeiten

Die Viskosität des Wassers

t [°C]	0°	10°	20°	30°	50°	70°	100°
η [mPa s]	1.792	1,397	1.002	0.798	0.548	0.404	0.283

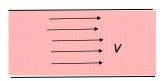
Über den Mechanismus der inneren Reibung

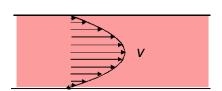
Gase:



Bewegung der Schichten

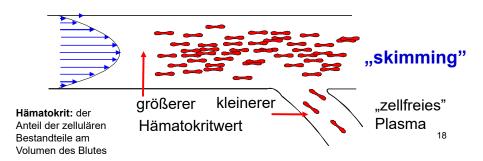
 $T \uparrow \eta \uparrow$

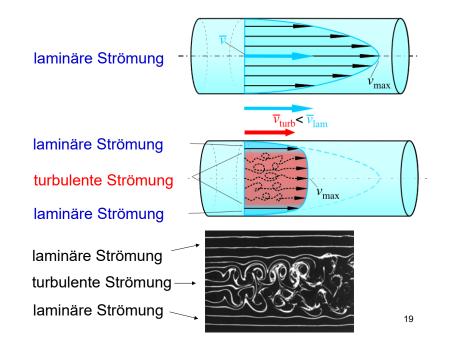

Flüssigkeiten:

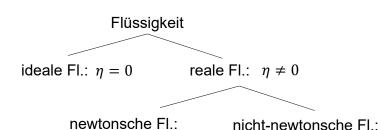


Konsequenzen der inneren Reibung

ideale Flüssigkeit

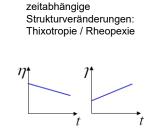


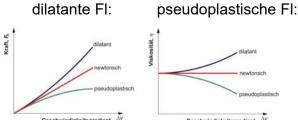



reelle Flüssigkeit

keine Reibung

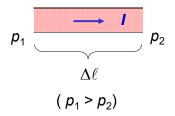
parabolisches Geschwindigkeitsprofil





 $F_{R} = \eta \cdot A \cdot \frac{\Delta V}{\Delta h}$

$$\eta \neq \eta \left(\frac{\Delta v}{\Delta h} \right)$$


$$\eta = \eta \left(\frac{\Delta v}{\Delta h} \right)$$

Hagen-Poiseuillesches Gesetz

Druckinhomogenitäten lösen Strömungen aus. Die Volumenstromstärke ist proportional zu dem Druckgradienten:

$$\frac{\Delta V}{\Delta t} = -\frac{\pi}{8} \frac{1}{\eta} r^4 \frac{\Delta p}{\Delta \ell}$$

Gültigkeitsbedingungen:

- laminäre Strömung
- stationäre Strömung
- starre Röhre

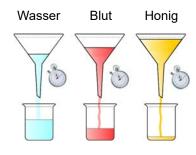
η

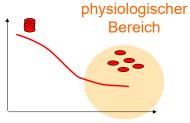
Newtonsche Flüssigkeit

21

Anwendung des H-P Gesetzes an die Blutströmung

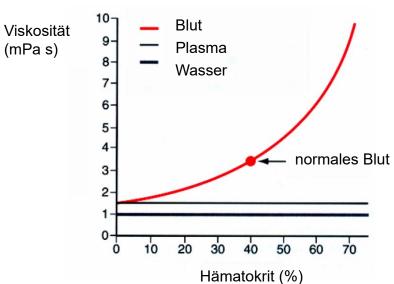
- · laminäre Strömung?
- stationäre Strömung?
- starre Röhre?
- Newtonsche Flüssigkeit?


Obwohl nicht exakt, doch ist das H-P Gesetz annähernd anwendbar an die Blutströmung!



22

Viskosität des Blutes


- $\eta_{\text{Wasser}} \cong 1 \text{ mPas} \rightarrow$ $\eta_{\text{Plasma}} \cong 1,5 \text{ mPas} \rightarrow$ $\eta_{\text{Blut}} \cong 1,5-4 \text{ mPas}$
- Hämatokritwert: Mass für die Zähflüssigkeit des Blutes
- Temperatur
- Geschwindigkeitsgradient:
 - ~ Geschwindigkeit
 - ~ Volumenstromstärke
 - ~ Druckabfall

Geschwindigkeitsgradient

Viskosität von Blut, Plasma und Wasser

24

Analogie zw. Strömung und elektr. Strom

Volumentransport

elektr. Ladungstransport

$$\frac{\Delta V}{\Delta t} = -\frac{\pi}{8} \frac{1}{n} r^4 \frac{\Delta p}{\Delta \ell} \qquad \frac{\Delta Q}{\Delta t} = -\sigma A \frac{\Delta \varphi}{\Delta \ell}$$

Was verursacht den

ruckgradient:
$$\dfrac{\Delta oldsymbol{
ho}}{\Delta \ell}$$

Druckgradient:
$$\frac{\Delta \pmb{\rho}}{\Delta \ell}$$
 el. Pot.gradient: $\frac{\Delta \varphi}{\Delta \ell}$

Transport?

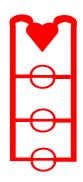
Was strömt?

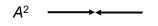
Volumen:
$$V$$

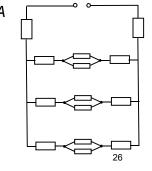
$$\frac{\Delta V}{\Delta t}$$

$$\frac{V}{t}$$
 $\longrightarrow \frac{\Delta G}{\Delta t}$

$$\frac{\Delta V}{\Delta t} = -\frac{1}{8\pi\eta} (r^2\pi)^2 \frac{\Delta p}{\Delta \ell}$$

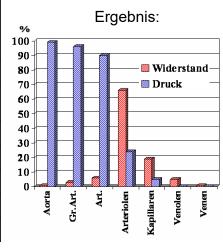

$$A^2$$


Volumentransport

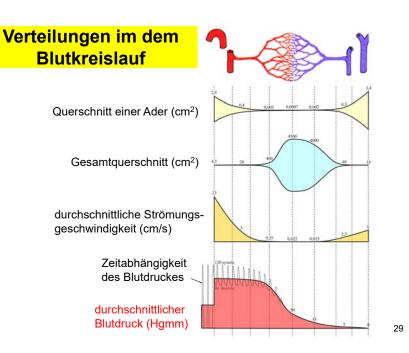

elektr. Ladungstransport

$$\Delta p = -8\pi \eta \frac{\Delta \ell}{A^2} \frac{\Delta V}{\Delta t} \longrightarrow \Delta \varphi = U = -R \cdot I$$

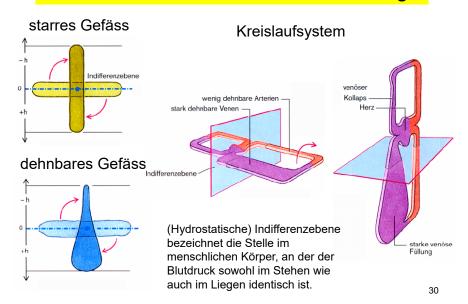
$$R_{ ext{Str\"omung}} = 8\pi\eta \frac{\Delta\ell}{A^2} \longleftrightarrow R_{ ext{elektr}} = \rho \frac{\Delta\ell}{A}$$



Verteilung des Strömungswiderstandes und des **Druckabfalles im dem Blutkreislauf**


Daten:

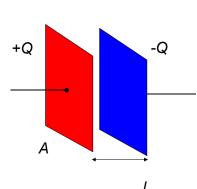
Adertyp	Anzahl	Län- ge (cm)	Gesamt quer- schnitt (cm²)
Aorta	1	40	3
Groß- arterien	40	20	6
Arterien	2000	5	15
Arteriolen	4·10 ⁷	0,2	130
Kapillaren	5·10 ⁹	0,1	1500
Venolen	8·10 ⁷	0,2	600
Venen	1200	5	40



Daten der Gefäßsegmente

	Aorta	Arterie	Arteriole	Venole	Vene	V. cava
Wandstärke (w)	2,5 mm	1mm	20 μm	10 µm	0,5 mm	1,5 mm
		w r	•	0		
Innenradius (r _i)	12,5 mm	2 mm	20 µm	30 µm	2,5 mm	15 mm
relative Wanddicke (w/r _i)	0,2	0,5	1,0	0,3	0,2	0,1
relative Wand- zusammensetzung	Koʻlagen glatte Muskulatur Elastin					

Effekt der Schwere auf die Blutverteilung



(Wiederholung)

Kondensator und Kapazität

Kondensator (dichtgedrängt, bezogen auf die Ladungen): Bauelement, das die elektrische Ladungen und Energie speichern kann, Ladungsspeicher

Plattenkondensator

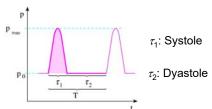
Kapazität des Kondensators

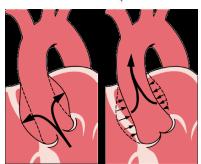
$$Q = C U$$

$$C = \frac{Q}{U}$$

31

Ladungsspeicherungsfächigkeit


Einheit: farad $1F = \frac{1C}{137}$


Für Plattenkondensator:

$$C = \varepsilon_0 \frac{A}{d}$$

Windkesselfunktion der Aorta

Kondensator: Ladungsspeicherungsfähigkeit

Windkessel: Volumenspeicherungsfähigkeit

elektr. Analogie

32