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From the atom to
many-particle systems
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* What is a system?

* How many particles are “many”?

* What is the internal “structure™?

* How do particles respond to forces

(caused by potential differences)?



What is a system!?

Social system

Chromatin




The system is an abstraction

Definition: the system is the part of nature under investigation.
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The system interacts with its
surroundings

(But we ignore this fact for the time being... see thermodynamics)

Exchange of matter and energy (“processes”) may take place
across the boundary.
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Defining the system bears
consequences

...for thermodynamic processes (see later)




There are many Types of systems
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the system may be characterized

...macroscopically:
by state variables that explicitely determine the overall state of the system.

Pressure: p

Volume: V
Temperature: T
Concentration: ¢
(number of particles,

N per unit volume V:
N/V)

see universal gas law:
pV=NkT

k: Boltzmann’s constant




the system may be characterized

...microscopically:
by describing the characteristics (e.g., energy) of each particle in the system

The energy of each particle
in the system is different...

System = % o
=

@

a® @ =
® e ® .. .
e ®

o
o

2

an ® (1

...but the average energy of every
particle, for each degree of freedom,
is 1/2kT (“equipartition theorem”).

Note: the macrostates (| and 2) are identical
(number of particles at given energies are same),
but their microstates (arrangement of actual

paticles) differ:
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Macroscopic description of a system:
distribution of pressure (gas density) in the atmosphere

Heishe 4 since gas density is proportional to pressure (p~p):
eig

(“barometric Ap=constAp
height”, h)
Ap=Ap/const
Hydrostatic pressure: Ap/COIlSt:-pgAh
2=pgh>
B> P ps Ap/Ah=-constpg
Ah Ap=-pgAh
If a variable (p) and its change (Ap) are
hi proportional, we obtain an exponential function:
p1=pghi v
— —consit-g:-
Pr=Po * € I
Con5|der|ng the universal gas law (pV NkT) the definition of density
(p = m—) and that p = const - p, “const” can be expressed as km—T
B
hence:
_mgh
o : — . e kgT
g: gravitational acceleration Ph= Po

m: mass of a gas molecule



Boltzmann’s distribution is a
universal organizing principle

* In a thermally equilibrated system the energy levels are
populated according to an exponential distribution.

* Relative population is regulated by the ratio of the energy
difference between the levels and the thermal energy.

* At higher temperatures higher energy levels are more populated.




Boltzmann-distribution applications

|. Barometric height formula

Partial oxygen pressure progressively drops with the distance from the sea level:
concentration (number of molecules in unit volume, n) becomes progressively reduced

mah - particle number at height /
( Ph _) np _ e_kBLT ng : particle nmber at the reference height

Do o mgh : potential energy

2. Thermal emission of metals

Upon thermal excitation, electrons leave the metal surface (e.g., x-ray tube,
photoelectron multiplier tube)

Ni —IZVC,} Ni : number of emitted electrons
— =e€e "B Wa : work function (work needed by the ¢ to leave the atom)

No



Boltzmann-distribution applications

3. Nernst equation

If, between two places (4, B), the concentration of charged particles (c4, cp) is
different, then electrical voltage (U) arises between these two places:

CA . ~av U = kBT Cp g : elementary charge

=e ksT In U : voltage between 4 and B
Cp q C4

Fundamental equation describing the behavior of concentration cells
and the resting potential.

Walther Nernst (1864-1941)
Nobel-prize (1920)



Boltzmann-distribution applications

4. Reaction equilibrium, rate

The equilibrium (distribution among energy states) and rate (speed of transition between
states) of a reaction are determined by relative differences between energy levels.

81
Reaction: 4 22 B

Ebarrier

nA
Equilibrium constant: K = £ =¢

Ny

Reaction coordinate —

Rate constants:

_ gbarrier _EA _ gbarrier _EB

k= we STk —we M

'y w : constant (s)

Ratio of rate constants = equilibrium constant:

€, €p
kT

Svante Arrhenius (1859-1927) Evarier €8 | Ebarrier "€ 4 €47%s
Nobel-prize (1903) / _ k,T k,7 k,T
k., /k,=e =e =K




The ideal (perfect) gas

* Composed of a large number of identical particles (Avogadro number)
* Particles are spherical, their volume is negligible

* There is no interaction between the particles

* Collisions are elastic (sum of energies is constant)

* In the limiting case (point particles) collisions occur only with the wall
of the container

* Particle motion follows the laws of classical (Newtonian) mechanics.
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|deal gas relationships

Aver.age energy of a particle lm<v2> _ §k T Intern.al- energy ofa system E = g]\fk T
(equipartition theorem): 7 B containing N particles: b~ B
31\ 0°C
Speed distribution - Maxwell distribution &
300°C

Upon increasing temperature:

* the average of the absolute value of molecular speed distribution
speeds increases (see equipartition) of O2 molecules

* the width of the distribution increases

0 500 1000 v(m/s)

Universal gas law (from the Clausius-Clapeyron, Boyle-Mariotte, Charles laws): relationship
between the pressure, volume, temperature and matter content of the ideal gas (state equation).

4
Frozen: Mass & Temp. P

° ] P = pressure (Pa)

| V' = volume (m3)
v | PV — nRT n = amount of material (mol)

R = gas constant (8.314 JK-'mol!)
PV — NkBT T = absolute temperature (K)

N = number of particles

ks = Boltzmann’s constant

V
Pressure-volume isotherms

Press. Temp.



The real gas

* Particles are not point-like, their volume () is not negligible.
Consequence: the volume available for motion =

V —_ Nb N = particle number

* Interactions (a) arise between the particles.

Consequence: pressure becomes reduced
p _ NkBT 2 n = number of particles in unit

m_ volume (N/V)
2
p+a% (V - Nb)= Nk, T

90 "y =
n o\

* Van der Waals state function:

T.=31,06 °C
il R =738 bar

* Van der Waals isotherms:

. . 60
Below a critical temperature (7%), at low pressures

phase transition occurs (e.g., condensation) 501
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Pressure-volume
diagram of CO2



