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Generation of light

Thermal radiation Luminescence Laser
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Luminescence: radiation released above the
thermal radiation of a body (cold light).



Luminescence in Nature




Applied Luminescence




Atomic energy levels
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Emission spectrum of Hydrogen
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Niels Bohr (1913): Electrons are situated in non-radiating stationary orbitals with
discrete amount of energies. Transition between stationary orbitals is possible only
if the electron gets, or releases, the exact energy difference between the orbitals.



Atomic energy levels
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* Electrons occupy the lowest possible energy state (ground state)

Pauli’s exclusion principle: no two identical electrons, having the same quantum
numbers, may occupy the same quantum state simultaneously

 Hund’s rule: the lowest energy state is the one with the maximum net spin value.



Let’s consider a single atom
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Ground state
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Typical excitation modes

- absorbtion of photons: photoluminescence

- energy of a chemical reaction: chemo/bioluminescence

- high electric field or current: electroluminescence

- mechanical deformation: triboluminescence mint candy

- heat: thermoluminescence
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= Mechanism of relaxation
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Energy levels in Molecules
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Mechanism of Fluorescence
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Singlet state: Fluorescence

paired electrons
with net spin of 0
(multiplicity of 1)

Excitation and relaxation (light
emission) in singlet states
— no change in spin state!



S, — 3= Kasha’s rule:

light emission emanates from

excitation the relaxation of the lowest
vibrational level of the first
S “=— excited state to ground state
Stokes’s shift

Eexcitation Z Efluorescence

E =h*c/A

7\,excitation S }\,ﬂuorescence




Mechanism of Phophorescence
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Triplet state:

Phosphorescence electrons with
unpaired spins
- (multiplicity of 3)
transition Metastable state

Relaxation after spin



Energy-relationship of luminescence modes

radiationless energy dissipation
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Fluorescence Phosphorescence

Eexcitation > Efluorescence > Ephosphorescence

Stokes’s shift

7\,excitation < kfluorescence < Kphosphorescence




Characteristics of emitted light

Spectrum — distribution of intensities along wavelength

Line-spectrum in the case of atoms:

AJ/AN | intensity is proportional with concentration

| position of spectral lines:
material characteristics
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Characteristics of emitted light

Band-spectrum in case of molecules

AJ/AK | absorption fluorescence [ |gJo/J

phophorescence
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7\dexcitation < }Lfluorescence < kphosphorescence

Stokes’s shift



Spectra of tryptophan
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Excited-state lifetime
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Single photon counting

Measuring of time-delay between

excitation and photon emission.

Statistical analysis of large

number of measurements.



time after excitation
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Typical excited-state lifetimes
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Is excitation always followed by photon emission?

e Excited state decay can be caused by mechanisms other
than photon emission and are therefore often called

"non-radiative transitions,,.

 These can include: chemical reaction, dynamic collisional
guenching, near-field dipole-dipole interactions, internal
conversion and intersystem crossing.



Is excitation always followed by photon emission?

Fluorescence quantum yield (Qg)

Qr = number of emitted photons / number of absorbed photons

0. <1



Luminescence summary

Types of luminescence:
Characteristics:

* emission spectrum:
— phosphorescence —  type

— fluorescence

— maximum A position

Singlet excited states
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Application fields of luminescence

* light sources

* concentration determination
* fluorescence spectroscopy

* fluorescence microscopy

e dosimetry

e structure determination

o cell/tissue labeling

e safety control ... many more



Luminescent light sources

High-pressure Na-vapor lamp



Low-pressure Hg-vapor lamp
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application: germicid lamp



Flame photometer
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Excitation

Fluorescence-based methods are wide-spread in
medical research and diagnostics

Excitation Emission
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Fluorescence microscopy
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protein/DNA staining fluorescent animal models



Fluorescent dye-labeling to follow
interaction of proteins in real-time
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Fluorescent quantum dots (QD)
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Fluorescent quantum dots (QD)

Simultaneous excitation at 365 nm
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Size-dependent emission

Figure 1: Fluorescence emitted from quantum dots.
Blue fluorescence can be emitted from small particles
of approximately 2 nm in diameter, green from ~3 nm
particles, yellow from ~4 nm particles, and red from
large particles of ~5 nm.

The wavelength of the excitation light is 365 nm.

Fluorescence

Excitation spectra overlap to ~400 nm,
so only one excitation wavelength is
proper to a set of QDs.
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Applications in dental medicine

Auto-fluorescence of teeth. When teeth
are illuminated with high intensity blue
light they will start to emit light in green.

Red fluorescence indicates the
activity of cariogenic bacteria

amalgam restoration



0-14

No special measures.

15-20 Usual prophylactic measures.

21-30 More intensive prophylaxis or restoration: indication is dependent on:
*Caries activity.
*(Caries risk. - KaVo DIAGNOdent
* Recall interval, etc. - How it Functions

from 30

Figure (5) Spectra camera with spacer on (Kurtzman, 2010).

Table 2: Interpretation of Spectra data (Kurtzman, 2010).

Restoration and more intensive prophylaxis.
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Reflection of Fluorescent Light
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Acoustic Signal

Coherent Light Digital Display

SOPROCARE. (A) Carious lesion invisible in DAYLIGHT
mode. (B) Carious lesion visible in CARIO mode

Figure (8) Photos showed cavity illumination with Facelight before and after caries excavation (21).

Mualla, Journal of Dental and Medical Sciences. 15:3, 2016, PP 65-75



Normal tissue
produces fluorescence

and appears as an
Abnormal epithelial apple-green glow
tissue and underlying
stromal disruption causes
loss of fluorescence

Blue Excitation Light

Epithelium

= Basement Membrane

t Normal Disruption of
Soma Stroma Stromal Collagen

Healthy and malignant tissues -
different fluorescent properties

native and fluorescent

images

native and fluorescent
images

Active caries

caries
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