Mechanisms of light emission

Laws of thermal radiation and Luminescence
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Thermal radiation

The temperature of the two bodies will become equal
@<@ — @:@ with time even in vacuum!
(no convection or conduction between them)

Consequently:
All bodies emit radiation independently of the temperature of
their surroundings. (Prévost, 1791)

The emitted radiation is always electromagnetic radiation.
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Quantitative description of thermal radiation:

Y

\V i

Pictet’s experiment

AA ]

* Absorption coefficient (@)

o = Jabsorbed by the surface O<a<1) M and a strongly depend on the
Jrecived by the surface absolute temperature of the body!



Kirchhoff’s law

Bodies that emit more also absorb more. The ratio between
radiant emittance and absorption coefficient is constant within a

narrow range of wavelength (1): ""
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The ideal black body

A theoretical body that is used as a model in the description of thermal radiation.
It absorbs all radiation that falls on it:

®plack body = 1

thus, we can calculate any real body’s radiant emittance if we know its absorption
coefficient (ay;):

M;; = a3iM) prack body

The hole on a dark cavity approximates an ideal black
% body

The radiant emittance of a black body depends strongly
on the absolute temperature!

Stefan’s law:

M=0cT*
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The ideal black body

The emission spectrum of the Wien’s displacement law:
black body is continuous.

AM ) ack ‘/lmaxT = constant
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constant = 0.0029 m-K )
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T, <T,<Ty<T, Max Planck’s radiation law:

The radiation energy of a black
body is emitted in discrete integer
multiples of a fundamental
“package”, the quantum.

E = hf
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Light sources based on thermal
radiation

Hot objects
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Sun light

Spectrum of Solar Radiation (Earth)
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Medical applications

Telethermography

Measures the radiant emittance of thermal radiation of
the human body.
Human body: A,,,, = 10 um (infrared)

a = 0.95 (95% of ideal black body)

Radiant emittance strongly depends on temperature!

Diagnosis of  inflammations,
cancer, circulatory defects that
cause the change in local

temperature.
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Medical applications

Non-contact thermometry

Typically measures the total radiant intensity between 8-14 um (spectral responsivity).
1 °C of temperature difference will increase the radiante emittance by ~1.5% !
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Luminescence

Spontaneous emission of a photon due to the relaxation of an excited electron.
Phases of luminescence:

* Absorption of external energy

* Excitation

* Emission of energy in the form of electromagnetic radiation

Types of luminescence

Light Photoluminescence Fluorescent lamp
Electric Electroluminescence Na-lamp

Radioactive Radioluminescence Nal (Tl) (scintillator)
Mechanical Triboluminescence (Percussion, friction)
Biochemical Bioluminescence firefly

Thermal Thermoluminescence CasSO, (Dy) (dosimeter)
S, — S, (fast) Fluorescence Fluorescein

T, =S, (slow) Phosphorescence Phosphorous



Fluorescent dyes Bioluminescence

Phosphorescent dial Radioluminescence - scintillation
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Luminescence of atoms

Luminescence emission of atoms has a line spectrum.
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Luminescence of molecules

Discrete energy levels split into vibrational levels.

atoms molecules The energy of a molecule is the sum of

v Vibrational its electronic-, vibrational, and
E2 } | | rotational transition energies. :
A evels
2&” 2’ Eiotar = Ee + Ey, + E;
NN —
R Molecular vibrations:
o - } Vibrational (2 examples)
Ey N levels .\ /. x *
< S
Luminescence of molecules has
ba nf spectrum Spin states of excited electrons
=2
g Singlet state (S) Triplet state (T)
< Sum of spin quantum Sum of spin quantum

numbersisS=0 (+1/2, -1/2) numbersisS=1(+1/2, +1/2)

Magnetic moment of spin state: 25 + 1




Luminescence emission of molecules

Jabtoniski diagram
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Luminescence emission of molecules

Jabtoniski diagram
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Lifetimes (t)
Excitation:
femtosecond (1015 s)

Vibrational relaxation:
picosecond (1012 s)

Fluorescence emission:
nanosecond (10° s)

Phosphorescence emission:

microsecond to seconds
(106-105)



Luminescence emission of molecules

Quantum yield (Qf):

k,,,: Rate of non-radiative transitions

0y = kf  number of photons emitted
"7 ks + k,, number of photons absorbed
Lifetime (7):
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Stokes shift

The shift between the emission and excitation spectra
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Comparing emission processes

_ Fluorescence Phosphorescence

Relaxation From singlet state From triplet state
S12S TSy
Lifetime Nanoseconds From microseconds up
to seconds
Stokes shift ~ Smaller Larger (because T, is at
lower energy than S,)
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VMeasurement of luminescence

Luminescence spectrofluorimeter

Spectrum recorded
while the excitation
wavelength is varied
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Applications - FRET

Forster Resonance Energy Transfer

Energy transfers from donor without emission to acceptor in diploe-diploe
interactions. Requires spectral overlap between donor emission and acceptor

absorption.
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Applications - FRAP

Fluorescence Recovery After

Photobleaching

Photobleaching: The permanent loss of

fluorescence
reactions.
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Side View
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Fluorescence microscope

detector
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Biomedical applications

Fluorescent transgenic animals Fluorescence guided surgery

Surgeon’s former view Surgeon’s new view
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View of localized region in peritoneal cavity of an ovarian cancer patient as seen
with the naked eye (left) or with the aid of a tumor-targeted fluorescence dye (right).




