
Dosimetrie der ionisierenden Strahlungen

Dr Smeller László Semmelweis Egyetem, Biofizikai és Sugárbiológiai Intézet

Grundbegriffe

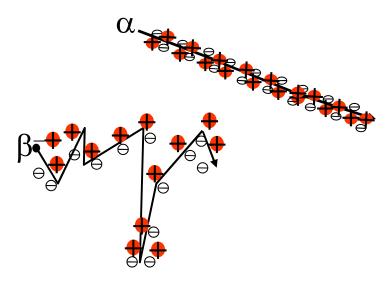
- Kernstrahlung:
 - Entsteht bei Kernumwandlung (Zerfall) a
 (He²⁺), b (e⁻,e⁺), g (EM.), n ... Strahlung
- Isotop (gleiche Protonenzahl, unterschiedliche Neutronenzahl)
- Radioaktives Isotop (unstabile, zerfällt sich, strahlt)
- Aktivität (Bq = Zerfall/s)
- Exponentielles Zerfallsgesetz

Wechselwirkung der Strahlungen mit der Materie

Kernstrahlungen — Absorption Messung

Wechselwirkung ⇒ Energieübergabe

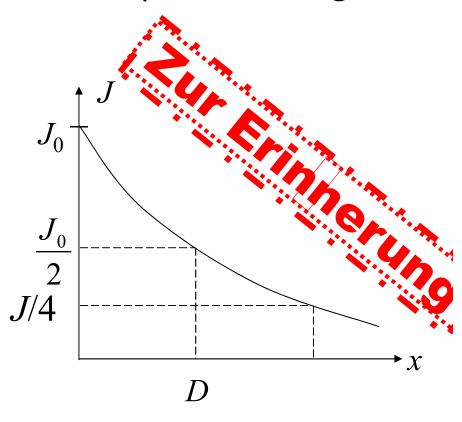
 α geladene Teilchen


 γ keine Ladung

direkte Ionisation

indireke Ionisation

Schwächung der Strahlungen:

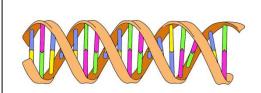

Geladene Teilchen

Ionisation \Rightarrow Energieverlust:

Reichweite:

 α < mm, $\beta \approx$ cm in Gewebe

γ-Strahlung


Exponentielle Schwächung **keine** Reichweite

Biologische Wirkung der ionisierenden Strahlungen

Mechanism der Wirkungen der Strahlungen

direkte

indirekte

Physikalische Phase:

10⁻¹⁷ -10⁻¹² s Ionisation

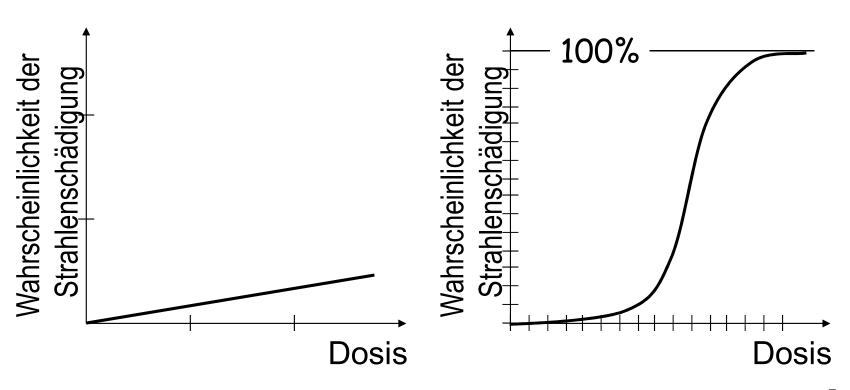
Chemische (biochemische) Phase:

10⁻¹⁰ -1s: Reaktion der freien

Radikale.

Biologische Phase:

Stunden: Gewebeschädigungen


Tage-Jahre: Somatische

Schadigungen, Tumor

Klassifizierung der Strahlenwirkungen

deterministische

Klassifizierung der Strahlenwirkungen

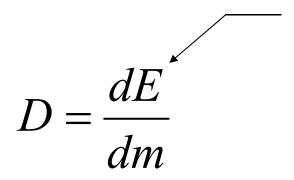
stochastische

Beim niedrigen Dosisniveau
Zufällig vorkommende
Keine Schwellendosis
Schwäregrad der Schädigung
ist dosisunabhängig.

Personal in den Röntgen und Isotoplaboratorien

Patienten der Rtg oder Isotopenuntersuchungen

deterministische


Beim hohen Dosisniveau
Kommt unbedingt vor über
einer Schwellendosis
Schwäregrad der Schädigung
nimmt zu mit der Dosis

Dosisbegriffe

1. Enmergiedosis

Energiedosis:

Die in *dm* Masse absorbierte Strahlungsenergie

Einheit J/kg = Gy (gray)

In 1 kg Masse absorbierte Energie

Energiedosis:

$$D = \frac{dE}{dm}$$

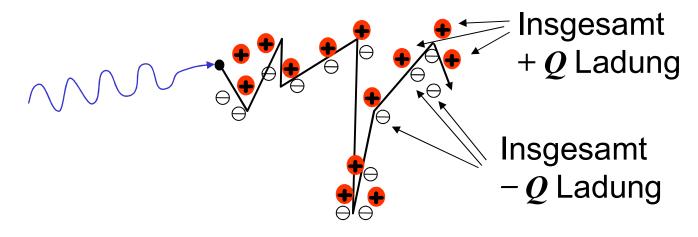
[Gy]

Messung:

 Die direkte Messung ist fast unmöglich 0minimale Temperaturerhöhung:

$$\Delta T = 0.006 \, ^{\circ}\text{C} / 4 \, \text{Gy})$$

- indirekte Methode
 - Ionisationskammer
 - Halbleiterdetektor
 - > Thermolumineszenz Dosimeter
 - **>** ...

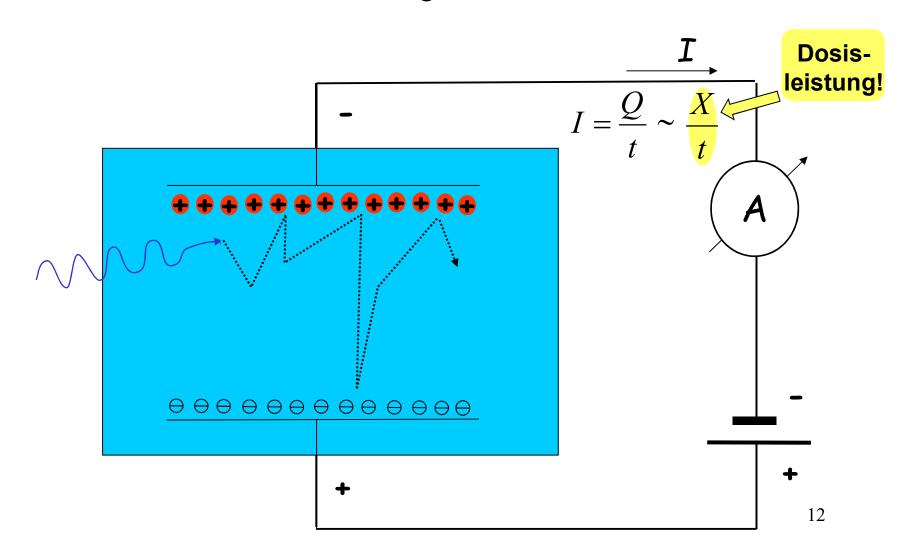

Dosisbegriffe

2. Ionendosis

Ionendosis:

$$X = \frac{dQ}{dm} \xrightarrow{\text{Die in } dm \text{ Masse}}$$
entstandene positive Ladung

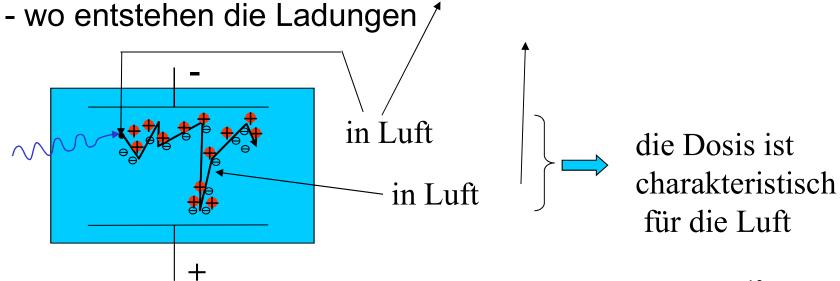
Maßeinheit: C/kg



Nur für γ und Röntgenstrahlung E_{photon} < 3MeV in Luft

Ionendosis

$$X = \frac{dQ}{dm}$$


Kann mit Ionisationskammer gemessen werden

Ionendosis:

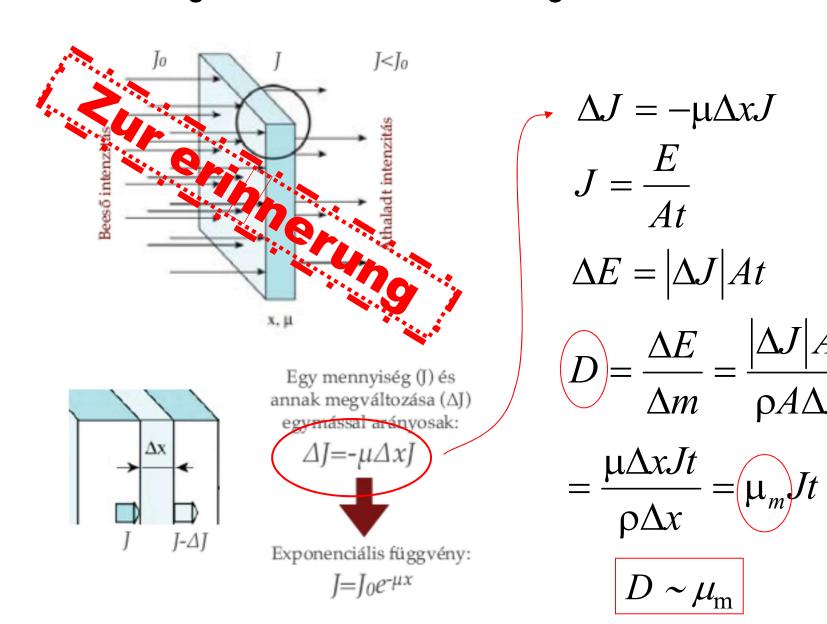
$$X = \frac{dQ}{dm}$$

- Wie kann in Energiedosis umgerechnet werden?
 - Zwei wichtige Faktoren:
 - wo de Absorption des Photons passierte,

Ionendosis

$$X = \frac{dQ}{dm}$$

Berechnung der Energiedosis aus der Ionendosis:


Man braucht 34 eV um einen Ionenpaar in Luft herzustellen

34 eV=
$$34 \cdot 1,6 \cdot 10^{-19} \text{ J} \longrightarrow 1,6 \cdot 10^{-19} \text{ C}$$

34 J $\longrightarrow 1 \text{ C}$

$$1\frac{C}{kg} \Rightarrow 34\frac{J}{kg} = 34Gy_{Luft}$$

^{*} Für Elektronen. für Protonen, α Teilchen ≈35 eV

Energiedosis in Luft -> Energiedosis in Gewebe

Energiedosis in Luft -> Energiedosis in Gewebe

$$rac{D_{Gewebe}}{D_{Luft}} = rac{\mu_{m,Gewebe}}{\mu_{m,Luft}}$$

$$D_{Gewebe} = \frac{\mu_{m,Gewebe}}{\mu_{m,Luft}} f_0 X$$

$$f_0 = 34 \frac{J}{C}$$

E_{Photon}<0,6 MeV, für Weichteilgewebe:
$$\frac{\mu_{m,Gewebe}}{\mu_{m,Luft}} \approx 1,1$$

Physikalische Begrife Biologische Wirkung zur Charakterisierung der Strahlung Energiedosis (D) Wirksamkeit der Strahlung Physikalische Empfindlichkeit des Geweben Dosis f_0 Ionendosis (X) Messtechnische Dosis

Die biologische Wirkung...

→ Deterministische Wirkung (z.B.: Strahlentherapie)

Typisch

- mit einziger Strahlungsart
- ein Organ wird bestrahlt

Energiedosis

Biologische Wirkung

→ Stochastische Wirkung (z. B. : Strahlenschutz)

Typisch

- mit mehreren Strahlungsarten
- mehrere Organe bestrahlt

Energiedosis

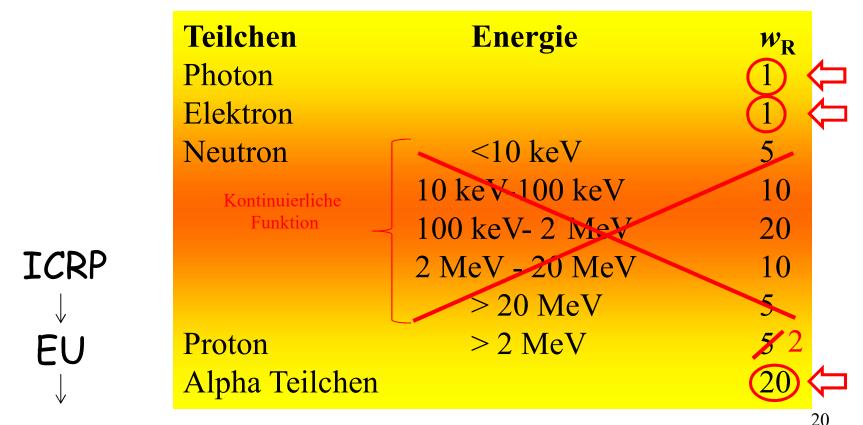
Biologische Wirkung

Biologische Wirkung

Wichtungsfaktor: Wirksamkeit der Strahlung Empfindlichkeit der Geweben

Equivalent dosis:
$$H_{\rm T} = \sum_{\rm R} w_{\rm R} D_{\rm T,R}$$

[Sv]


 D_{TR} ist die Energiedosis der Strahlung R im einem Organ T.

z. B.:

$$H_{\rm Haut} = w_{\rm alpha} D_{\rm Haut, alpha} + w_{\rm beta} D_{\rm Haut, beta} + w_{\rm gamma} D_{\rm Haut, gamma}$$

Wichtungsfaktor W_R

 w_R gibt an, um wieviel die Wirksamkeit der Strahlung grösser ist, als die der γ -Strahlung. (Bei der stochastischen Schädigung!)

Staatliches Gesetz

Energiedosis

Wichtungsfaktoren

Biologische Wirkung

Wichtungsfaktor: Wirksamkeit der Strahlung

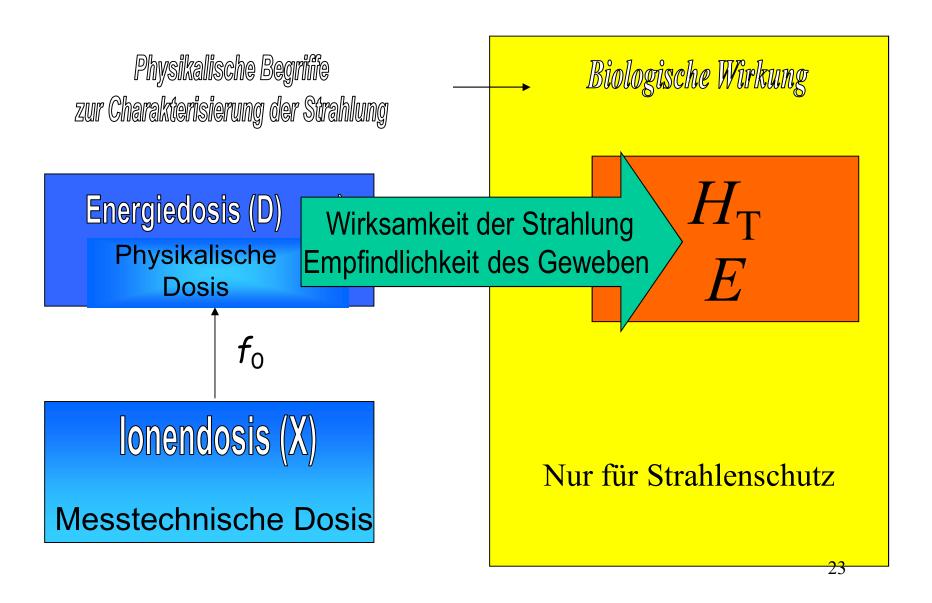
Empfindlichkeit der Geweben

Effektive Dosis:

$$E = \sum_{\mathbf{T}} w_{\mathbf{T}} H_{\mathbf{T}}$$

[Sv]

W_T gibt an, die Wahrscheinlichkeit dass die Stochastische Schädigung als Ergebnis der Bestrahlung des gegebenen Organs *T.*


$$\sum_{\mathrm{T}} w_{\mathrm{T}} = 1$$

Bei einer homogenen Ganzkörperbestrahlung: E = H

Wichtungsfaktor W_T

Gewebe	$\mathbf{W_{T}}$	Gewebe	$\mathbf{w}_{\mathbf{T}}$
Rotes			
Knochenmark	0,12	Speiseröhre	0,04
Dickdarm	0,12	Leber	0,04
Lunge	0,12	Schilddrüse	0,04
Magen	0,12	Knochenoberfläche	0,01
Brustdrüse	0,12	Gehirn	0,01
Andere			
Geweben*	0,12	Speicheldrüse	0,01
Gonaden	0,08	Haut	0,01
Blase	0,04		

Zusammenfassung der Dosisbegriffe

Strahlenschutz

Personal:

Rechtfertigung

Optimierung

Dosisbeschränkung

Rationelle Reduzierung der stochastischen Schädigung

Patienten:

Ausschließen der deterministischen Schädigungen

Rechtfertigung: cost-benefit Prinzip

Optimierung: diagnostische Empfehlungen

Dokumentierung der Patientendosen

Berechnung der Energiedosis bei einem γ-strahlenden Isotop

Punktförmige Strahlenquelle:

$$D = \frac{K_{\gamma} \Lambda t}{r^2}$$

 $D = \frac{K_{\gamma} \Lambda t}{r^{2}}$ $K_{\gamma}: Dosiskonstante \left[\frac{\mu G y \cdot m^{2}}{h \cdot G B q} \right]$ $\Lambda: Aktivität [Bq]$

r: Abstand von dem Isotop [m]

t: Bestrahlungszeit [s,h]

z.B.:
$$K_{\gamma} = 80 \frac{\mu Gy \cdot m^2}{h \cdot GBq}$$
 für Isotop ¹³⁷Cs:
1GBq ¹³⁷Cs in 1 m Abstand: 80 μ Gy/h

Dosisbeschränkungen

- Unter Schwellendosis der deterministischen Schädigung bleiben.
- Das Risiko der stochastischen Strahlenschädigung soll kleiner sen als das allgemeine Risiko von Berufsunfällen

Dosisbeschränkung ≠ erlaubte Dosis!

Dosisbeschränkungen:

- 1. berufliche
- 2. für Bevölkerung

Es gibt keine für Patienten!

Dosisbeschränkungen

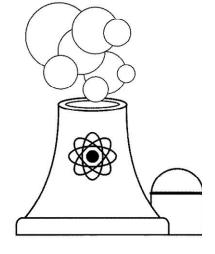
≠erlaubte Dosis!

Beruflichen Stahlenexposition

– Ganzkörperbestrahlung 20 mSv/ év

(~ 10μSv/ Arbeitsstunde)

- Augenlinse 20 mSv/Jahr
- Haut 500 mSv/Jahr
- Extremitäten 500 mSv/Jahr


Dosisbeschränkungen

≠erlaubte Dosis!

Für Bevölkerung*

- Ganzkörperbestrahlung: 1 mSv/Jahr
- Augenlinse 15 mSv/Jahr
- Haut 50 mSv/Jahr
- Extremitäten:50 mSv/Jahr

^{*} Zusätzliche Strahlenbelastung, ausgenommen die natürliche Hintergrundstrahlung und die ärztliche Strahlendosis

^{**}Zum Vergleich: Dosisleistung der Hintergrundstrahlung ≈ 2,4 mSv/Jahr

Einige typische Dosiswerte

(und Dosisleistungswerte)

Natürliche Hintergrundstrahlung: 2,4 mSv/J

Ärztliche Untersuchungen (Patientendosis)

Gewöhnliche Röntgenaufnahme: 0,2-1 m\$v

CT: 2-8 mSv

Therapie:

Interventionsradiologie

Arzt: Hand: 50 mSv/Monat

Auge: 15 msv/Monat

Gonaden

(unter Bleischutzmantel):0,25 mSv/Monat

Patient: bis 1 Gy!!

Strahlentherapie: typisch 45-60 Gy aber lokalisiert und fraktioniert! (2 Gy/Tag)