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Diffusion across membranes
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1 1010 Na* ions: P = 10-"2m/s = 103 nm/s, so it takes ~2h
Cl ' to get across a 5 nm membrane!
Kt —> o The phospholipid bilayer is practically impermeable

e L :
Na 10 for small ions and larger charged molecules!



Transport across biological membranes
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- free diffusion is effective only for small non-polar molecules
- the transport mechanism can be channel-mediated or carrier-mediated
- based on its energy requirement, the transport can be passive or active



lon-channels

multisubunit transmembrane proteins, selective for ions, their
open/closed states are governed either by regulatory molecules
(neurotransmitters, hormones) or by change in membrane potential
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Active transporters

sodium-potassium calcium pump proton pump
pump

P-type active transporters (pumps)



P,

02_>

urea

tryptophan —#-
glucose

Diffusion across membranes
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Fick 1stlaw: J =—P Ac
P: permeability coefficient
[P] = m/s



Factl: The ionic composition is characteristically
different in the interior and in the extrior of cells

Ion Intracellular Extracellular
concentration (mM) concentration (mM)

Na™ 15 142

K™ 150 4

CI™ 5 120

Ca®" 10~ 1

Mg ™" 1 0.5

HCO3 8 27

Nonpenetrating 155 0

anions



Fact2: An electric potential difference can be measured
between the outer and inner surface of the cell membrane
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electrode @ potential

Saline -80 mV
bath -80 mV Time / Time —

membrane potential ~ -60 —-90 mV

&

In resting (not activated) cells the inner surface of plasma membrane is
always on negative potential relative to the outer surface.



Diffusion of ions across membranes

: _ Ac for neutral
FICk I J’” - _DE particles

Diffusion of 10ns depends both on the chemical and
the electric potential = electrochemical potential:

He =+ ZFp

consequence: J. = =D, (Ack ok AQO)

k-th 1on’s flux: |

Ax  KRT Ax



Electrochemical equilibrium

,Ue=,UI'ZF(”
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Ho + RTInc{ + zF ] = iy + RTInc{" + zF ¢]'

equilibrium
potential

C. .
= lnC;, Nernst equation



Donnan model of membrane potential

- there is an eletrochemical equilibrium in resting cells

- the cell membrane is permeable only for K* ions

RT K.

Pe=0i—

F K"

We conclude that the membrane potential

cannot be described properly with the
Donnan equilibrium model.

In—-!

Resting potential (mV)
i
1S5UE calculated measured
Giant axon of
squid 91 62
Frog muscle 103 92
Rat muscle 92,9 92




Transport model of membrane potential

the membrane 1s permeable, but to a different
extent, to the various ions (e.g. K", Na™, Cl")

flux of ions # 0, but the net flux =0
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Transport model of membrane potential

ZJ — JK++ JNa++ JCI': O

Acy, Z, F A(p)
Ax | KRT Ax

ik = _Dk(

0. — O = _& 2P, Cre 2P Cy;
C F Xpicy +ZpC

Goldman — Hodgkin — Katz equation

PK " PNa - PCl =1: 0,05 - 0,45



Transport model membrane potential

potential (mV) Squid axon Rat muscle
Umeasured -62 -92
Ucnk -61,3 -89,2
RT . Xp/c, +2p. c.,
0, - =———In LT | p o p P =1:0,05: 0,45

F o Epiey; +Ipicy,

good agreement with experimental results



The membrane potential is maintained
by the Na*/K* ATPase (pump)
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At rest, ~1/4t of all the energy in a cell
Is consumed by the Na*/K* pump!




Passive electric porperties of membranes
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electrode electrode
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The electric model of membranes

resistors
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Local changes in membrane potential
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T = time constant of the membrane:

membrane
capacitance

N

transient changes of membrane potential limited in space and time

membrane
resistance

/

7=C R

U (1)=U,

the time needed for the change 1n membane potential

- to reach 63% of 1ts maximum value

- to drop to the e-th of its value at the end of stimulation




Local changes in membrane potential

transient changes of membrane potential limited in space and time

local changes in
membrane
potential
(after
stimulation)

A = space constant of the membrane:

the distance where the amplitude of stimulus

is the eth of its initial value



Local changes in membrane potential

transient changes of membrane potential limited in space and time

Induced by:

. Properties:
- current pulses experimentally

obligate, oraded
- adequate stimulus at receptor cells S &

, _ magnitude and direction
- neurotransmitters at postsynaptic membranes:

varies with stimuli

localized (limited)

- excitatory potential - depolarization
- inhibitory potential - hyperpolarization
SUMMATION in space and time = summation of local potential changes

Depolarizing stimulus Hyperpolarizing stimulus
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Observation

—_ inward current

4 outward current

depolarization

Upn (MV)

hyperpolarization

Action potential



Characteristics of the action potential

Threshold
potential

critical
membrane l ! ' g r g
potential level at
which an action =114 stimuli
potential occurs !

facultative
“All-or-none” amplitude
conducted with constant amplitude



Hodgkin-Katz hypothesis of action potential generation

Voltage-gated, potential sensitive ion channels

RT | Epici, +Ep,c,

PV T TR Uspiel v apie,

depolarization

inward Na' current Pna (Ena ) INCreases



Hodgkin-Katz hypothesis of action potential generation

More Sodium Channels

Open
Sodium Channels
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Voltage Clamp

Intracellular Signal generator

electrode
( Avon 9, Extracellular
electrode
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Feedback
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monitor

- Membrane potential 1s kept constant
- 1on-current 1s measured




I (LA)

Measurement of separated ionic currents

K*-current

Inhibited Na*-

channels

0 5 10
t (ms)
Voltage-Gated Na* and K* Channels



Membrane potential (mV)
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Patch-Clamp

Feed-back loop (FBR)
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States of voltage-gated sodium channels

Inactivation gate — '
Channel closed

Channel nactivated

at depolarization threshold




Structure of the fast Na* channel
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Function of the fast Na* channel
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Propagation of action potential

(c) The refractory period prevents
backward movement of the action
potential.

Active regions | Inactive region

Refractory region

_ Na*

S o T

The trigger zone is in its refractory @ ® @@@@@ | '; i di;tal-parts PP

period. K* gates have opened and
e S~——> local current flow from the

the Nat inactivation gates have : : :
alpoite K+gfrom the @@ ! ® @)/ active region causes new sections
cytoplasm repolarizes the membrane. | | of the membrane to depolarize.

Speed and distance of propagation?

How are the time constant and the space constant related to
propagation velocity of action potentials



Effect of axon radius on propagation velocity:.

Ry (~1/r2)
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Myelination!
R, — very high I—)> big space constant

C,—verysmall m—)> small time constant
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Saltatory conduction

Adjacent inactive node
into which depolarization

Active node at peak Is spreading; will soon Remainder of nodes
of action potential reach threshold still at resting potential
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The diameter of frog axons and the presence or absence of
myelination control the conduction velocity.

Fiber type Average axon diameter (pwm) Conduction velocity (m-s™!)
Myelinated fibers
Aa 18.5 42
AB 14.0 25
Ay 11.0 17
B Approximately 3.0 4.2
Unmyelinated fibers
C 2.5 0.4-0.5




Temporal and spatial summation
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Operation of the voltage-gated K* channel

open channel closed channel

Rod Mackinnon, Nobel prise 2003

\ KT+
{H ~50mV/5nm =

3P E 10.000.000 V/m
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Practicals: ECG, sensor



