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INTRODUCTION 
 
There is a story about a man, who had whiskey and soda on 
Monday, gin and soda on Tuesday, and rum and soda on 
Wednesday. Because the result was always the same, he 
drew the conclusion, that soda made him drunk. 
 
Maybe not in terms of whiskey and soda, but our behavior 
resembles that of the man in the above story. Many of us 
draw inappropriate conclusions easily and make 
decisions based on them. One tends to generalize from 
single cases and select subjectively from the available 
information for the purpose of self-justification. Standpoints 
and opinions made this way are often very hard to change. 
 
In first approximation, statistics is the field of science that 
helps to combat this general “disease”. It helps to arrange 
one’s thoughts critically and keeps skepticism alive, which 
is the base of every intellectual activity. 
 
Because statistical reports are part of the everyday life, and 
it may seem that everybody knows the methods used to get 
them as well. This is partially true, because anyone, who 
went to school in Hungary in the last twenty years, 
definitely used statistical procedures quite a few times. 
When a student calculates the average of his/her grades 
from different subjects in order to know what he/she could 
expect in the school record at the end of the year, the 
student, though unaware of it, applies a typical case of 
making a statistical estimation. 
 
The word “statistics” has several different meanings. The 
meaning used here stems from the Latin word “status”. Its 
original meaning is condition, status, the state of things. 
Collected data make it possible to know and describe the 
status. Data are individual facts, qualitative or 
quantitative properties. Typical everyday examples of data 
are, for example, personal data such as name, birthplace, 
date of birth; names and prices of the products sold in a 
shop; regarding medical conditions they may be the 
paleness of the face, blood pressure, or a result of any 
laboratory diagnostic test. 
 
Usually, data collection has a purpose. One asks a telephone 
number of someone to be able to call him or her later. The 
attitude of just collecting data in the hope that it may be 
useful for something, and trying to find the aim later is 
usually not appropriate (it is the characteristic of secret 
agencies only). Collected but unsorted data are usually 
entirely useless. What could we do with telephone numbers 
listed in the order of theirs arrival to the switchboard? Often 
data are sorted according to their importance. The doctor 
applies this when describing the condition (status) of the 
patient. Thus, data must be collected, processed, 
conclusions need to be drawn, and most of the time 
decisions should be made. Statistics is a field of science 
that is able to do all these. The “bio” prefix indicates that 
here the methods of statistics are used to analyze 

phenomena of the living world. Methods of medical 
statistics are even more specialized for problems occurring 
in medicine. 
 
It is not easy to convince freshmen in medicine that 
statistics is very important. Furthermore, it is inevitable 
for them. Some examples are listed below. 
 
Students have to carry out different measurements during 
most practices, some theoretical classes and later during 
their advanced studies as well. Reliable conclusions can 
be drawn from the measured data only by statistical 
methods. 
 
Case-history sheets and laboratory files contain a large 
number of data. It is extremely important that physicians, 
dentists and pharmacists are able to use statistical methods 
to evaluate data properly, draw conclusions, and judge 
the reliability of the results. Statistics can save us from the 
deceptions present in the overwhelming advertisements of 
new drugs and procedures. 
 
Understanding medical literature is sometimes difficult, 
as it often contains statistics. As an example, let us quote 
from a medical paper: "In the first group of patients the 
average  preoperative  refractive disturbance (ametropia) of 
–3.94 ± 1.3 diopters decreased during a one year follow-up 
period to – 0.47 ± 0.54 value” and later: ”Statistical results 
were analyzed using a two sample t-test and regression 
analysis.” The question is, what do those numbers mean and 
what are these methods? 
 
Last but not least, statistics provide a unique view, a way 
of thinking, which is very similar to the way of thinking 
of physicians. Let us illustrate this with an example. 
Suppose that your patient complains about a headache, and 
you want to find a reason. Based on your medical studies 
you will recall most of the possible reasons of a headache, 
such as: 
 

1. High blood pressure. 
2. Improper eyeglasses. 
3. Inner pressure of the eyes is too high. 
4. A tumor in the head. 
5. Calcification of cervical vertebra. 
6. Sensitivity to weather changes. 
7. An oxygen-deficient working environment. 
 

Because there could be several true answers, all the 
possibilities must be checked one by one, and decide 
whether the suspicion was well formulated. This procedure 
is principally the same as the hypothesis testing method that 
will be discussed later. 
In the first approximation, there are four types of statistical 
procedure: data collection, organization of data, analysis 
of data and the drawing of conclusions. 
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DATA COLLECTION AND MAIN TYPES OF DATA 
 
As mentioned earlier, data collection is motivated by a goal. There are data that are 
used only to identify and distinguish certain things. Larger number of data is 
collected in a hope that following data analysis a previously formulated question 
can be answered. The way of collecting data or accessing data is called 
“experiment” in general. Some data are already known, we just need to ask 
someone about it. Other data need to be measured somehow. In this regard the 
investigation of a natural phenomenon or casting a dice are both experiments. The 
data (the result of the experiment) can be of several different types. Qualitative 
data can be sorted into categories (categorical data). Quantitative data are 
characterized by a number (numerical data). Qualitative data are, for example, the 
names of the diseases, types of pathogens, or the severity of the condition. The size 
of the rash or the duration of the sickness can be expressed by a number (and a 
unit), therefore these are numerical (quantitative) data. There are two kinds of 
qualitative (categorical) data depending whether they can be sorted naturally in 
some order. An example of ordinal (sortable) data is, for example, the severity of 
the disease: modest, medium, strong. Nominal (not sortable) data are for example 
the blood groups: A, B, AB, 0.  There are two sub-groups within the numerical 
data as well: continuous and discrete. If the result of the measurement can have any 
value within a certain interval, it is called continuous (e.g., weight, height, blood 
pressure). Other data can only have discrete values (e.g., number of children in the 
family). The above types of data are summarized in table 1. We have to mention 
that continuous data are only theoretically continuous. In practice we always work 
with discrete numbers (otherwise one would need to use an infinite number of 
decimal digits). 
 
ORGANIZING DATA, FREQUENCY AND GRAPHIC 
REPRESENTATION 
 
In everyday life we often deal with a large number of data that are connected to a 
given problem. We need to organize and summarize our observations so that we 
obtain an overview of the data. 
 

 
INFECTION 

 
DISEASE 

 

Absolute 
frequency 

 

Relative  
frequency 

 
 

bacterial 

Salmonellosis (Food 
poisoning by Salmonella) 

 
94 

 
 

208 

 
0.280 

 
 

0.619 Scarlatina (Scarlet fever) 102 0.304 
Other bacterial 12 0.036 

 
 

viral 

Hepatitis infectiosa 
(Hepatitis) 

 
22 

 
 
 

126 

 
0.065 

 
 
 

0.375 
Mononucleosis infectiosa 
(Mono) 

22 0.065 

Lyssa (Rabies) 74 0.220 
Other viral 8 0.0238 

other Other infections 2 2 0.006 0.006 
        total: 336 336 1.000 1.000 

 
Table 2. A summary table of infections. 

 
Table 2 summarizes the infections reported to occur in Budapest in October, 2000. 
Numbers in the first column of the table (94, 102, and so on) are occurrences of 
individual infectious diseases (Salmonellosis, Scarlatina, etc.) during the given 
time period. These numbers are called absolute frequencies. In the next column, 
subtotals (208, 126, 2) of the first column are calculated that correspond to larger 
groups of bacterial, viral or other types of infections. These are also absolute 
frequencies. 
 
From the absolute frequencies the relative frequencies can be calculated. The 
relative frequency equals the absolute frequency of the category divided by the 
total number of cases (336). Relative frequencies are always numbers between 0 
and 1 and are listed in the next column of the table. If percentage is preferred, 
multiply these relative frequencies by 100. Thus, relative frequency is a ratio, as 

 
 

Table 1. Classification of data. 
  

 
 
Fig. 1a. Bar graph. Absolute frequencies 
of infections as a function of categories. 

  

 absolute frequency 
 absolute HäuFig.keit 
 abszolút gyakoriság 

  
 relative frequency 
 relative HäuFig.keit 
 relatív gyakoriság 
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we can see from the definition. To be appropriate, when speaking about relative 
frequency, both the category and what we compare it to must be specified. 
In our example, if the question is how frequent is salmonella infection among the 
bacterial infections, we have to divide the number of salmonella cases (94) by the 
total number of bacterial infections (208). The result (0.452) is a relative 
frequency, but here the comparison was made with the bacterial infections (208) 
rather than the total number of the infectious cases (336). 
 
There are many ways to represent the absolute and relative frequencies graphically. 
There are two of these illustrated in Figs. 1a. and b.  
 
GRAPHICAL REPRESENTATION OF THE RELATIONSHIP 
BETWEEN DATA 
 
It occurs many times in our experiments that several characteristics are 
determined simultaneously, or one attribute is measured as a function of a fixed 
parameter (e.g., as a function of time, like the regular measurement of body 
temperature in the hospital). In such cases we are interested in the relationship, the 
connection between the two sets of data. To get a better overview of data it is 
practical to plot them in a graph. Here the word connection is used in a very 
general sense, and it does not mean causality. 
 
When plotting data we have to make two important decisions: the scaling of the 
axes and the choice of the staring point (origin). It is not necessary to represent 
the origin (zero values of both axes) on the graph. For example, if the index of 
refraction of protein solutions is measured, we know that we cannot get lower 
value than the index of refraction of distilled water (1.333). 
 
The rule of thumb is that the graph (data points) should fill the available area of 
display as much as possible (see Fig. 2). It is useless, however, to increase the scale 
so much that the analysis of the data would give greater accuracy than the 
measurement itself. Such an apparent increase of accuracy may be confusing. 
 

 
 

Fig. 2.  Improper and proper arrangement of the graph. 
 
Measured data always have errors. Hence, when drawing a line through the 
measured data points, draw a smooth line across the data rather than connecting the 
scattered points. Try to display equal number of points above and under the curve 
in such a way that their distances from the curve roughly identical. This way in 
most cases (except of some rare examples), you will get a smooth, continuous 
curve fitted to the measured data (see linear regression). 
 
STATISTICAL INFERENCE AND PROBABILITY 
CALCULUS 
 
The final goal of the statistical methods is to draw conclusions. The scheme of 
statistical inference is very similar to logical induction. In logics, the syllogism is a 
form of induction, where certain statements necessarily indicate further 
statements. (Classical example: every man is mortal. John is a man. Therefore, 
John is mortal.) 
 
Statistical inference is not entirely the same as logical inference, however.  Logical 
inference gives a statement that is 100 % sure, whereas statistical inference 
yields a statement of given probability (always less than 100 %). We may be 
mistaken in case of statistical inference. For example, if we state something with 

Check your knowledge: 
Is there a contradiction in the following 
statement? 
“In my group the relative frequency of girls is 
smaller than in the group of my friend, but we 
still have more girls in our group.” 

  

  
Fig. 1b. Pie chart. Relative frequencies 

of the viral infections (categories). 
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95 % probability it means that in 5 cases out of 100 we were wrong, the inaccuracy 
is 5 %. The accuracy of our statements can be expressed in numbers. 
 
By reformulating the statement we can decrease the inaccuracy at will, but this 
may yield more meaningless statements. Let us have an example. The police report 
after a bank robbery says: “… eye witnesses saw the suspects getting in a car; it 
was concluded that the suspects left the scene with their own car or by a taxi, or 
they may have used a stolen or a rented car.” If we decrease the inaccuracy of 
our inference, it has a price by which the usefulness of the conclusion is 
reduced; it is less valuable. Our inductions are governed by these two opposite 
tendencies. 
 
The reason of inaccuracy (in contrast to logic) is that in case of statistical 
inference we are not able to take all of the circumstances into account. A coin 
tossed is not governed by the mere chance when heads or tails fall. The situation is 
that we do not know all the necessary data with the right accuracy that will 
determine unambiguously the final position of the coin, that is, whether the result 
will be heads or tails. Because we cannot take every circumstance into account, we 
cannot give a definite answer; hence we say that this event is random, where the 
word “random” expresses just the lack of our knowledge. 
 
In association with gambling it was observed a long time ago that even the 
random, mass events follow some rules. If the experiment of tossing coins is 
repeated many times, the result will be heads in the half of the cases and tails in the 
other half. We cannot prove this, but based on the experience, we can say that in 
case of a large number of (independent) experiments the relative frequency of the 
heads [(number of heads)/(number of heads + tails)], and that of the tails [(number 
of tails)/(number of heads + tails)] show stability (law of large numbers), and both 
will be around ½.  Based on this, we can say that the probability (chance) of 
getting heads in one toss is exactly ½.  The probability of getting tails is obviously 
the same. 
 
Probability calculus gives a mathematical description of laws of mass events in 
the material world that are not determined unambiguously by the 
circumstances. Our experiments, observations and data fall into this category. 
Consequently, statistics are based on the principles of probability calculus. 

  
POPULATION, VARIABLE, SAMPLE 
 
Everyone makes measurements, experiments or observations. Some examples are 
listed in the Table 3. 
 

W H O  M E A S U R E S  W H A T ?   

PHYSICIST  PHYSICIAN  STUDENT DURING THE 
PRACTICE OF MEDICAL PHYSICS 

(topic and number of practice) 
length body height red blood cell diameter (3.)  

frequency pulse rate pulse rate (9., 20.) 
temperature body temperature – 

concentration blood glucose level  blood plasma protein concentration (5.) 
voltage ECG-signal ECG-signal (24.) 

power density hearing threshold hearing threshold (22.) 
pressure blood pressure blood pressure (   ) 

impedance skin impedance 
(resistance) 

skin impedance (21.) 

  
Table 3. What does a physicist, a physician and a medical student measure? 

 
Let us emphasize again that the goal of our measurements is to understand 
something or to answer a question. 
 
Let us choose, as an example, the measurement of pulse rate that can be easily 
done during the practice of medical biophysics as well. The pulse rate, the 
frequency of heartbeat, is technically a continuous parameter; we use discrete 
values (integers) just for simplicity, and because we are used to that. The unit of 
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the pulse rate is 1/minute. We will work only with the number values in the 
following, but note that all the final results should have units, too. There are many 
questions which could be answered by this measurement.  
 
Such questions are: 

1. WHAT IS THE VALUE of pulse rate of medical student Doris Diligent? 
2. WHAT IS THE normal VALUE of the pulse rate? 
3. DOES the pulse rate CHANGE after holding breath for one minute? 
4. IS THERE A DIFFERENCE between the pulse rate of girls and boys?  
5. Etc., etc. 
 

Let us examine the questions one by one. Without knowing any statistics one 
would think that answering the first question is very easy. We just need to measure 
the pulse number of Doris, and we will have a result and that’s it. However, if 
one has heard about statistics already, then skepticism wakes up and instead of a 
definite answer even further questions will be asked. Such questions are: is this the 
right answer for sure? Did I make any mistake during the measurement? If the 
investigator knows that "chance" factors also influence the experiment, then an 
“accurate” measurement cannot be performed no matter how hard it is attempted. 
Hence a decision is made to perform the measurement again and again. 
 
When performing a measurement several times, it is always assumed that the same 
thing is measured again, and the same result is expected. In other words, the 
pulse rate of Doris is expected not change in the long run in any direction, and 
the results might differ only due to random variations. We can say that the result 
have two parts: the main one is the deterministic (constant) and the subsidiary one 
is the stochastic (random). Naturally, these two parts can not be separated directly. 
 
Multiple measurements can be regarded as if there was a set of all possible 
observations, called the population (fundamental ensemble), and during every 
measurement we choose an element of this set. In our example the set has an 
infinite number of elements, but this is not a necessary condition. An element of 
this set in general is called the variable, and x is its usual symbol. The variable 
may attain different values. The value of the variable is given by the particular 
measurement. 
 
A single measurement is not sufficient to answer the other questions either. In the 
case of the second question we assume that there is a fundamental deterministic 
normal pulse rate, and the pulse rate of the individuals is randomly scattered 
around that value. In this case we can imagine the population as a large but finite 
number (say, the total number of people in a country, N = 1 245 782, Fig. 3.) of 
individuals with their known pulse rates in that moment. These individuals together 
with their pulse rates will form the population. Thus, in this case the population has 
a finite number of elements. 
 
In the first case the measurement was repeated on the same person (many times), 
and in the second case the pulse rate was measured (once) on a large number of 
people. The variable is very similar in both cases, but the population is different. 
The third and fourth questions will be discussed later. 
 
Although the questions ask something about the population, in most cases we do 
not and cannot know the whole population. Therefore, we choose a sample from 
the population that contains a total N elements. Sampling means choosing n 
elements, ideally randomly, from the population. Sampling happens, for 
example, when we measure several times. Sampling makes sense only if n can be 
much smaller than N (see Fig. 3). 

 
DISTRIBUTION OF THE SAMPLE, FREQUENCY 
DISTRIBUTION, HISTOGRAM 
 
These concepts will be introduced through an example. Let us choose the second 
question from the list (WHAT IS the normal value of the pulse rate?) and measure 
the pulse rate of the students of a group. The student group together with the pulse 
rate data can be considered as a sample (n = 20) taken from the population related 
to the question (see Fig. 3). The collected data (xi, where i = 1, 2, 3, 4, 5,…,20) are 
listed in the Table 4 below. 

 sample 
 Stichprobe 
 minta 

  

 frequency distribution 
 HäuFig.keitsverteilung 
 gyakorisági eloszlás 

  
 histogram 
 Histogramm 
 hisztogram 

  

 variable 
 Variable 
 változó 

  

 
 

Fig. 3. Illustration of population, 
variable (pulse rate, the values of 

which are indicated on the chest of the 
figures) and sample. 
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Table 4. Pulse rate values of the student group (example). 
Such a table may look much better than a simple list of numbers.  In order to make 
sense out of the values and grasp their meaning, we have to organize them. If we 
plot our data on a coordinate line, the variation around a “normal” value becomes 
apparent. 

 

 
Fig. 4. Pulse rate data plotted on a coordinate line. 

 
Albeit arbitrary, three regions may be distinguished: I. many datapoints, II. few 
datapoints, III. no datapoints at all. 
 
A reefinement of this picture leads to the concept of the frequency distribution 
that we get by grouping the data into classes. Let us make intervals of the same 
width (classes) through the axis and count the data (frequency) falling in these 
classes. The relative frequency distribution can be calculated as well. The intervals 
need not be of the same width, but this way it is easier to handle them. 
 
Because the given set of individual data can be grouped in more than one way, 
many different frequency distributions can be constructed from the same dataset. 
Table 5 represents one of them. 

 
Table 5. One possible frequency distribution of the sample. 

 
The frequencies and relative frequencies can be represented graphically in a bar 
diagram (bar graph). The graph consists of a series of rectangles, each with an 
area proportional to the frequency of data in the corresponding class interval 
represented on the horizontal axis. The method can be used with uneven class 
distribution as well. This graphic representation of data is called the histogram. 
Equal class widths are convenient, because in this case the frequency if 
proportional to the height of the rectangle. 
 
Fig. 5 shows several different histograms constructed from the same pulse rate 
data. Class widths are equal in the first two histograms, but the class limits differ; 
in the last two cases the class widths were changed as well. There are no strict rules 
for constructing histograms, although some esthetic guidelines may apply (see 
Comment 1). 
 
As we can see in Fig. 5, classes of the variable are represented along the horizontal 
axis of the histogram and the absolute and relative frequencies along the vertical 
axis. Every small rectangle (or square) corresponds to one measured value, thus the 
total number of rectangle units equals the total number of measurements (n = 20). 
This is the total area under the frequency curve. The total area under the relative 
frequency curve is always 1, or 100 % (because of the division with the total 
number of measurements n). 
Although the shapes of the four histograms (Fig. 5) are rather different, which 
depends on their construction, some regularity can be seen. We can observe that all 

66 56 89 63 66 69 71 68 58 69 
78 66 64 84 74 76 69 77 74 76 

CLASS LIMITS  FREQUENCY RELATIVE FREQUENCY 
55 d xi < 60 2 0.10 
60 d xi  < 65 2 0.10 
65 d xi < 70 7 0.35 
70 d xi < 75 3 0.15 
75 d xi < 80 4 0.20 
80 d xi < 85 1 0.05 
85 d xi < 90 1 0.05 

total: n = 20 1.00 

Comment 1: 
The appearance of the histogram is "esthetic" 
if it is neither sporadic (contains no gaps), nor 
jam-packed into one or two classes (it has a 
structure).  

If we want to 
construct the 
"optimal" histogram 
into a quadrangle 
area, then the 
number of classes 
(intervals) should 
roughly be equal to 
the maximum 
number of elements 
in one  

interval, both denoted by m. Then one 
element occupies a quadrangle area (instead a 
rectangle). According to the figure, the 
optimal number of the classes is:  

nm 2 . 
The optimal size of the classes ('xopt) can be 
obtained by dividing the difference of the 
maximum (xmax) and minimum (xmin) of the 
data by the optimal number of classes:  

m
xxx minmax

opt
�

 ' . 

 The first two histograms of Fig. 5 were 
constructed in accordance with these  
principles. 

  
 

Fig. 5. Several possible histograms of 
the sample. The first was made based on 
Table 5. Every rectangle represents one 

observation. 
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of them have a "hill" roughly in the middle and around the same value, and their 
"width" is very similar. If the data size is increased and at the same time the class 
width decreased (there is no limit to continue the process), then the rough steps of 
the envelope observed imitially gradually smooth into a continuous curve (Fig. 6.). 
 
DISTRIBUTION OF THE POPULATION, THEORETICAL 
DISTRIBUTION CURVE 
 
Let us have a closer look at the tendency shown in Fig. 6. If the population consists 
of a finite number of elements (N ), then upon increasing the number of the sample 
elements (n) the sample size will eventually reach the polulation size, hence the 
sample will contain all the elements of the population (n = N ). Thus, the 
distribution of a sample with N elements yields the distribution of the 
population. The only uncertainty arises from the arbitrary choice of the class 
limits. For populations containing an infinite number of elements we can only say 
that upon increasing the sample size the sample distribution approaches better and 
better that of the population. In this case the population is described by a 
theoretical distribution. 
 
The population distribution determines all the properties of the variable. It 
provides the probabilities of all the possible values of the variable (nothing more 
can be said about the variable). Let us have an interval (a, b) on the coordinate 
axis. The probability that a randomly chosen value falls within the interval (a, b) 
equals the area that lies under the distribution curve in this interval (from a to b). If 
in the interval (a, b) the distribution curve has small values, the area under the 
curve is small, and the corresponding probability of incidence of these values of 
the variable will be low (Fig. 7/1). However, if in the interval (a, b) the distribution 
curve has large values, the area and the corresponding probability will be high 
(Fig. 7/2). If the width of the interval is increased, the area under the curve 
increases too, which means higher probability of incidence for these values (Fig. 
7/3). Similarly to the histograms, the total area under the curve equals 1, because 
the "interval" (a, b) which in this case spans from – ∞ to + ∞ contains any 
randomly chosen value for sure. (See earlier remark about the inaccuracy and 
usefulness of a statement) 
 

 
Fig. 7. Meaning of the area under the distribution curve (see text). 

 
It is important to note that we always speak about an interval, because there is no 
area above a single value (the width of such an "area" would be zero). 
Consequently, in case of continuous variables probability that a randomly chosen 
value exactly matches a given number is zero. This technically means that all the 
measured data are different. In practice, however every measured number means 
an interval as we always use numbers with finite decimal places. The last digit is 
always rounded. (See earlier: continuous and discrete character of data). 
 
The theoretical distribution describes all the possible data (i.e., the population), 
whereas the histogram concerns only the elements of a sample taken from the 
population (i.e., the data of the specific measurement). 
 
PRINCIPAL THEOREM OF STATISTICS 
 
Let us recall how we obtained the theoretical distribution: the number of elements 
in the sample, thus the number of measured data was increased. The principal 
theorem of mathematical statistics is that in case of large samples, the empirical 
distribution function (i.e., the envelope of the histogram) approximates very 
well the theoretical distribution function. Consequently, one may hope that the 
more frequently data occur within a certain interval in the sample, the more 
probable is the appearance of these values in the population as well. 

 
 

Fig. 6. Increasing the data size and 
decreasing the class width gradually 

smoothes the envelope of the histogram. 
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A characteristic parameter of a population is determined by mathematical statistics 
through the examination of only a certain number (preferably few) of its elements. 
Sampling means choosing the elements to be examined (the sample) in a way that 
enables us later to draw reliable conclusions (inferences) about the whole 
population. This is usually achieved by random selection of sample elements 
(See Comment 2). Notably, the problems and aspects are particularly relevant in 
medicine.  
 

NORMAL OR GAUSSIAN DISTRIBUTION 
 
Depending on the examined variable, the theoretical distribution may have 
different shapes. However, in most of the cases it is a symmetric bell-shaped 
curve with one peak (we shall give the reason for this later on), which is called 
normal or Gaussian distribution. This type of distribution is illustrated in Fig. 6. 
and Fig. 7. The mathematical expression of the Gaussian distribution function is: 

2

2

2
)(

22

1)( V
P

SV

�
�

 
x

exg .                                      (1) 

 

Th expression may seem somewhat complicated, but in fact it is a modification of 
the 

2
)( xexf � function, decorated with some parameters. The normal or Gaussian 

distribution is not a single distribution function. Due to its parameters it describes a 
whole family of them: the shape of the curves is similar, but their position, width 
and height may vary (see Fig. 8). 
 

 
 

Fig. 8. Some Gaussian distributions with different position (P ) and width (V ). 
 
Starting in the centre of the curve and working outward the height of the curve 
descends gradually at first, then faster and finally slower again, resulting in a bell-
shaped curves with tails spanning to the infinity. Although the curve descends at 
the extremes toward the horizontal axis, it never actually touches it, no matter how 
far out one goes. The total area under the curve is 1 by definition (see earlier: 
theoretical distribution). 
 

 
 

Fig. 9. The bell-shaped Gaussian distribution and its parameters. 

  
  

Carl Friedrich Gauss (1777-1855), 
German matematician. 

Comment 2. 
The sample has to be representative with 
respect to the population. It is a fundamental 
requirement that the distribution of the 
investigated parameter, apart from random 
sampling variations, has to be the same as 
that in the whole population. We have to keep 
this in mind when designing experiments. 
When we organize a survey about the 
occurrence of thyroid problems, for example, 
we have to collect data from every region of 
the country, taking into consideration the 
density of the population. Over-
representation of certain regions may lead us 
to incorrect conclusions. As an example, 
iodine-deficient tap water leads to much 
higher occurrence of the symptomes of 
hypothyroidism in the northern counties of 
Hungary than in the southern ones. 

 normal distribution,  
        Gaussian distribution 

 Normalverteilung, Gauss Verteilung 
 normális eloszlás, Gauss-eloszlás 

  

 theoretical standard deviation, SD 
 theoretische Streuung 
 elméleti szórás 

  

 mean, average 
 Durchschnitt 
 átlag 

  

 empirical standard deviation, SD 
 empirische Streuung 
 tapasztalati szórás 

  

* (Unfortunately, the word "average" is often 
used to refer to any measure of central 
tendency, therefore it is better to use "mean", 
and we shall follow this practice.) 
  

 expected value 
 Erwartungswert 
 várható érték 
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The constants P and V in the previous formula are the parameters of the 
distribution. These parameters specify one curve from the infinite number of 
possibilities. The parameter P is the so-called expected value that gives the 
position of the maximum of the curve on the x axis. The parameter V is the 
theoretical standard deviation, which characterizes the width of the distribution. 
The width of the distribution is roughly 2V at the half height (more precisely: the 
so-called inflection points of the curve are at a distance of V from the P value) (Fig. 
9). Based on this, the customary notation for the normal distribution is N(P�V). 
 
Some general statements are valid for the relationship between the bell-shaped 
normal curve and its parameters. About two thirds (68 %) of the area lie under the 
curve between P � V and P � V� and 95 % of the area is between P � �V and 
P + �V ���Only two thousandths of the area under the curve falls beyond the 
(P � �V, P � �V) range, thus most of the area is included within a 6V long section 
around the expected value. The height of the curves is not an independent 
parameter; it is inversely proportional to V as a result of the fixed (unit) total area 
under the curve. 
 
Among the infinite number of possible normal distributions there is a special one, 
for which P = 0 and V = 1. This distribution is called the standard normal 
distribution, and according to the notation defined above it is N( 0,1) (second 
curve from the left on the Fig. 8). 
 
The outstanding significance of the normal distribution is pointed out by the well 
known central limit theorem of probability calculus. According to this, the 
values that are influenced by many little and independent effects follow a 
normal distribution. This explains why the majority of variables occurring in 
nature are normally distributed. 
 
As a "medical" example, the Gaussian distribution of body height and blood 
pressure can be mentioned. The height of adult men in Hungary corresponds to the 
N( 171, 7) distribution (measured in cm). The diastolic pressure, measured in 
Hgmm, of schoolboys follows the N( 58, 8) and that of smoking young men 
follows the N( 84, 10) distribution. 
 
Let us have a closer look at the first example of the heights, where 3V = 21 (cm). 
We can say that the height of the vast majority of adult men (more than 99 %) is 
between 150 and 192 cm. There are a few 2-meter-tall men, but this is not typical 
at all. The most common height is 170 cm, but one can meet men of 160 and 
180 cm very often too. This shows an important feature of the living world: 
although there are typical values, the diversity, that is the difference between 
individuals is very important, too. 
 
in the second example one may notice at a first glance that the blood pressure of 
smokers is not only higher (84 > 58), but its theoretical standard deviation is larger 
(10 > 8) as well. However, if one calculates the relative (theoretical) standard 
deviation, which is the V �P ratio, the situation will be the opposite 
(10/84 ≈ 0.12 < 8/58 ≈ 0.14). Often the relative standard deviation, which can be 
expressed in percentage ((V �P�∙���� %)), reveals more than the absolute standard 
deviation. Standard deviation may be small or large, but what is important is how 
large it is relative to the expected value. Thus, determination of both P and V is a 
very important task. The "exact" determination of parameters is, however, a 
tedious work, and in case of an infinite number of elements in the population it is 
impossible. The parameters will only be estimated.  
 
ESTIMATION OF THE PARAMETERS, STATISTICAL 
PROPERTIES OF THE SAMPLE 
 
We know that the Gaussian curve is determined unambiguously by its two 
parameters ( P and V). Our goal is to give the best possible estimate for these 
parameters by using the data of a sample. 
 
The expected value ( P ) is estimated most often by the mean ( x ), which is the 
arithmetic mean (average*) of the data (elements of the sample): 

Comment 4. 
Table of the data: 

xi n = 20 
x1 66 
x2 56 
x3 89 
x4 63 
x5 66 
x6 69 
x7 71 
x8 68 
x9 58 
x10 69 
x11 78 
x12 66 
x13 64 
x14 84 
x15 74 
x16 76 
x17 69 
x18 77 
x19 74 
x20 76 

 ¦ ix 1413 

The mean of the pulse rate: 

71
20
1413

| 
6

 
n
xx i (1/min)  

(rounded). 
The sum of squares: 

� �

55.1246
20

1413101075
2

2
2

 � 

 
6

�6 
n
x

xQ i
ix

 

The variance: 

66
19
55.1246

1
2 | 

�
 
n
Q

s x (1/min)2 

(rounded). 
The empirical standard deviation: 

8
19
55.1246

1
| 

�
 

n
Q

s x (1/min)  

(rounded). 
The degree of freedom: 19. 

Comment 3. 
Further options for estimating the expected 
value P : 
1. The mode is the number that occurs with 
the greatest frequency, namely the value 
corresponding to the maximum of the 
frequency distribution. As the frequency 
distribution is ambiguous (depends on the 
choice of classes), so is the mode. When there 
are only few data available, it is especially 
not a good attribute. (The mode of the data 
from the Table 4 is, according to the upper 
graph of the Fig. 5, between 65 and 70.) 
2. The median is the middle one or the 
average of the two middle ones from the data 
organized in ascending order. Note that 
extreme data do not influence the value of the 
median. Especially when the measured 
extreme values are unreliable for technical 
reasons, this is the best estimate of the 
expected value. (The median of the sample 
given in Table 4. can be read from the Fig. 4. 
as 69.) 
(In case of Gaussian distribution and a 
sample of large number of elements we have: 

mean ≈ mode ≈ median 
(Skewed distributions also exist where this 
statement is not valid.) 
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The mean is the most stable central tendency measure of the distribution that is 
responsive to the exact value of each element of the sample, and is least sensitive 
to the change of the sample. What makes the mean of high importance is that the 
sum of all deviations from this number equals zero (because the sum of the 
negative deviations will be equal to the sum of positive deviations): 

¦ ¦ ¦¦
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i
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If we imagine the data spread across a board according to their values, then the 
mean corresponds to the position of the balance point of the distribution. 
 
The theoretical standard deviation V  is estimated from the squares of the deviation 
of the points from the mean. It is called the empirical standard deviation (s), and 
it is defined as: 
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To avoid misunderstanding, the variable is often indicated in the subscript sx. The 
square of the empirical standard deviation is called the variance: 
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Because the sum of the squared deviations (sometimes called sum of squares) 
present in the numerator of the above formula and very similar terms (quadratic 
expressions) will occur in our calculations very often, it is convenient to introduce 
a special notation (Q) for it. Because calculation of the sum of squares is rather 
tiresome, we derive an equivalent but more calculation-friendly form of this 
expression: 
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   .              (6) 
 

(n – 1), the denominator in formulas (4) and (5), the expression, is called the 
degree of freedom. This term of statistical calculus is related to the estimation of 
parameters and is closely connected but obviously not always equal to the sample 
size (number of datapoints). In the beginning, the degree of freedom of the sample 
of n elements is n. If, however, a newly added value is estimated from pre-existing 
values of the sample, then the number of the actually used previously estimated 
values must be subtracted from the original number of freedom n. Because in the 
calculation of the empirical standard deviation the previously estimated mean of 
the same sample is needed, the degree of freedom is n–1. In more complicated 
cases there will be a formula given for the determination of the degree of freedom. 
(Comment 4 contains the calculation of the most important characteristics of the 
sample from Table 4). 
 

The estimated and „true” values of a parameter are somewhat different. This 
difference is the error of the estimated parameter (discussed later). There are 
essentially two types of error: inaccuracy and distortion. Inaccuracy is the error 
which causes a random deviation from the true value in either the positive or 
the negative direction. Distortion causes the estimated value of the parameter to 
be systematically smaller or larger than the "true'' value of the parameter. 
Whereas inaccuracy can be estimated, distortion cannot. 
 

Using the definitions of the mean and empirical standard deviation given above 
(leaving distortions out of consideration) the following statement can be made: as 
the number of sample elements approaches infinity, the mean approaches the 

 variance 
 Varianz 
 variancia 

  
 degree of freedom 
 Freiheitsgrad 
 szabadságfok 
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expected value and the empirical standard deviation approaches the theoretical 
standard deviation with higher and higher accuracy. Or, with symbols: 
 

if     fon ,   then  Pox  and Vos .                                  (7) 
 
The empirical standard deviation s is the measure of variability of the data. It 
gives the average deviation of the data from the mean. Similarly to the Gaussian 
distribution (Fig. 9), 68 % of the elements of the sample are within the interval 
( sx r ), 95 % are within the interval ( sx 2r ), and more than 99 % are within the 
interval ( sx 3r ). 
 
The interval ( skx �r ) calculated from a large number of data (n ≈ 1000) contains 
exactly 95 % of the elements of the sample (k ≈ 2) and it is called reference range 
or normal range. This is used mostly in the field of laboratory diagnostics. (In 
certain medical applications the interpretation of normal range can be different.) 
For 95 % of the healthy people the diagnostic parameter will fall in the normal 
range and for 5 % will be outside of it (see Comment 5). 
 
In this case the distortion is not a problem, because if the entire dataset is 
systematically shifted, the reference range is shifted accordingly. One can 
sometimes observe this when comparing results from different diagnostic 
laboratories. Reference ranges can be slightly different for the same variable, 
because the applied protocols and apparatuses are not the same. 
 
 
CONFIDENCE INTERVAL, ACCURACY AND RANDOM 
ERROR OF THE ESTIMATED PARAMETER 
 
Let us emphasize once again that the error of the estimated parameter can be 
distortion as well, which is usually not possible to determine. Because of this, from 
now on the error will imply inaccuracy only, or random error. As stated before, if 
the number of the elements increases, the mean approaches the expected value 
more and more (see formula (7)), but we still do not know the answer to the 
question of how much the mean deviates from the expected value characteristic for 
the population in case of a sample of n elements. In other words, what is the error 
of the mean? 
 

 
 

Fig. 10. Random sampling distribution of means: pulse rate data and 
corresponding mean of eight groups (samples of 20 students). Note that the means 

of different groups "spread" much less than the data themselves. 
 
As discussed previously, the mean as a central parameter is not sensitive to the 
changes of the sample because all the elements of the sample are involved in the 
calculation, and, especially in larger samples, a single element plays a minor role in 
altering it. Thus, the sample means calculated from randomly selected samples (of 

Comment 6. 
From the pulse rate data we have already 
calculated the mean (71 (1/minute)) and the 
empirical standard deviation (8 (1/minute)). 
The standard error is  

2
20
8

|  
n
ssx  (1/min); 

and the error limit is (at 95 % confidence 
level) 

xsx 2r =71 ± 4 (1/min). 
(rounded). 
 
The result of the measurement can be stated 
as follows: "based on our experimental 
data we can say with 95 % confidence that 
the expected value of the pulse rate of the 
examined population is in the 67-75 
(1/minute) range" (Fig. 11). 
In order to have the expected value in the 
chosen range with greater certainty or 
accuracy, the number of data has to be 
increased. 
How many is enough? 
There is no a general rule, but for this 
situation we can say some considerations. 
Since the pulse rate is given rounded as an 
integer value, increasing the accuracy beyond 
±1 (1/minute) does not make much sense. 
The question of certainty is ambiguous, but 
99 % certainty or more is rarely needed. 
According to this, if we choose the error 
limit, then n must be increased until the error 
decreases to the value where the 13 dxs  
condition is satisfied. 
 

Comment 5. 
"the diagnostic value is in the normal range" 

Let’s make this clear 
with an example. The 
probability of throwing 
6 on a dice is 1/6, 
which is around 17 %. 
Hence the probability 
of not 

 throwing 6 is 5/6, which makes (5/ 6 ≈ 0.83) 
approximately 83 %. 

If instead of the regular 
dice we use an 
icosahedron (a regular 
solid shape having 20 
faces) with numbered 
faces, the probability 
of throwing 20 is 
1/20 = 0.05 = 5 %.  

The probability of not throwing 20 is 
19 / 20 = 0.95 = 95 %.  
Now, we can imagine the strength of the 
statement: "the diagnostic value is in the 
normal range", as it is of equivalent certainty 
to not throwing 20 by an icosahedron. 

 

 standard error 
 Standardfehler  
 standard hiba 
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the same population) are not very different. In other words, the sample means 
( ixxx ,...,, 21 ) "spread" much less around the expected value than the data (Fig. 
10.).  
 
This ''spread" is expressed as the standard error (standard deviation of the 
sampling distribution of means): 

n
ssx  .                                                   (8) 

 
The final result is usually given in the form of: 
 

xskx �r .                                                     (9) 

 
The result is always an interval, a limiting value in negative and positive 
directions enclosing the expected value from both sides. The problem is how to 
set the value of k. Where are these boundaries? This is ambiguous. The wider the 
range (k is large), the more likely that it includes the expected value, and our 
conclusion is probably right (see earlier: statistical inference). However, a wide 
range is rather useless in the everyday practice. The narrower the range, the higher 
the chance that the expected value is outside the chosen range, and the certainty of 
our conclusion becomes lower. Thus, increasing the estimation certainty and 
lowering the chance of a mistaken conclusion requires a wide range.  By contrast, a 
narrow range is required for making professionally relevant interpretations. 
 
Methods of statistics enable us to declare the extent of accuracy. Accordingly, we 
calculate a range of values about which we are reasonably confident (certain) that 
contains the "true" parameters. The interval is referred to as the confidence 
interval, its limits are called confidence limits, and the degree of confidence is the 
confidence level.  
 
Even though the value of k depends on the number of elements of the sample 
(degree of freedom), for large sample we can say, that if k = 1, the confidence level 
is around 0.68, if k = 2, is approximately 0.95 and for k = 3 it is greater than 0.99 
(see table 6). 
 
 

Confidence level 
(approximately) 

68% 95% 99% 

Confidence interval 
xsx r  xsx 2r  xsx 3r  

  error limit sure error limit 
 

Table 6. Confidence levels and the corresponding confidence intervals. 
 
Having learned all these we may answer the "WHAT IS THE VALUE of ...?" type 
questions (or present the final result of a measurement) according to formula (9) in 
the form of a confidence interval (see Comment 6, Fig. 11). 
 
It is straightforward from definition (8) that the error decreases with increasing the 
number of data: 

if  fon ,          0oxs ,                                         (10)  

It is visible that measuring many times has a good reason. For a fixed confidence 
level we can achieve the narrowing of the confidence interval beyond any limit just 
by increasing the number of data (see Comment 6). 
 

 confidence level 
 Konfidenzniveau 
 konfidencia szint 

  

 confidence interval 
 Konfidenzintervall 
 konfidencia intervallum 

  

 
 
Fig. 11. Error limit, calculated from the 
sample contains the expected value of 
the population with 95 % certainty. 


