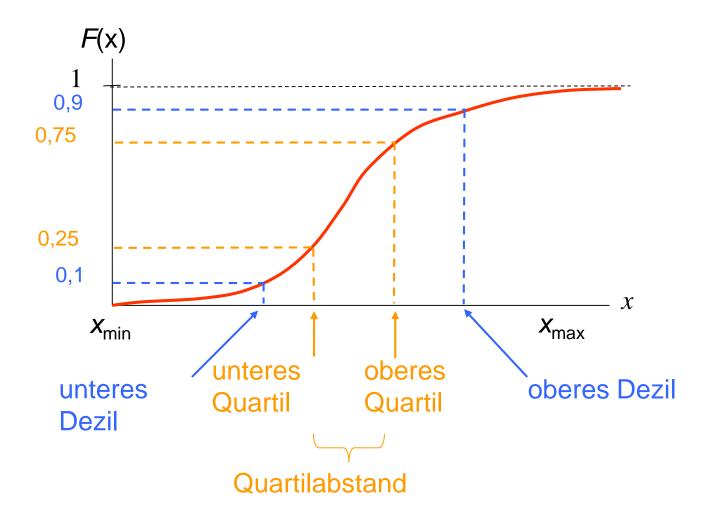
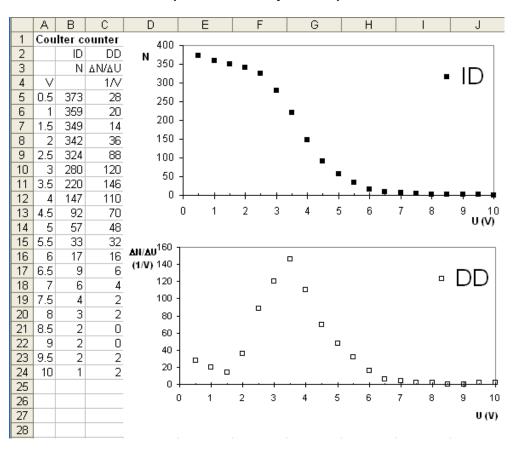
Quantile und die relative Summenhäufigkeits-verteilung



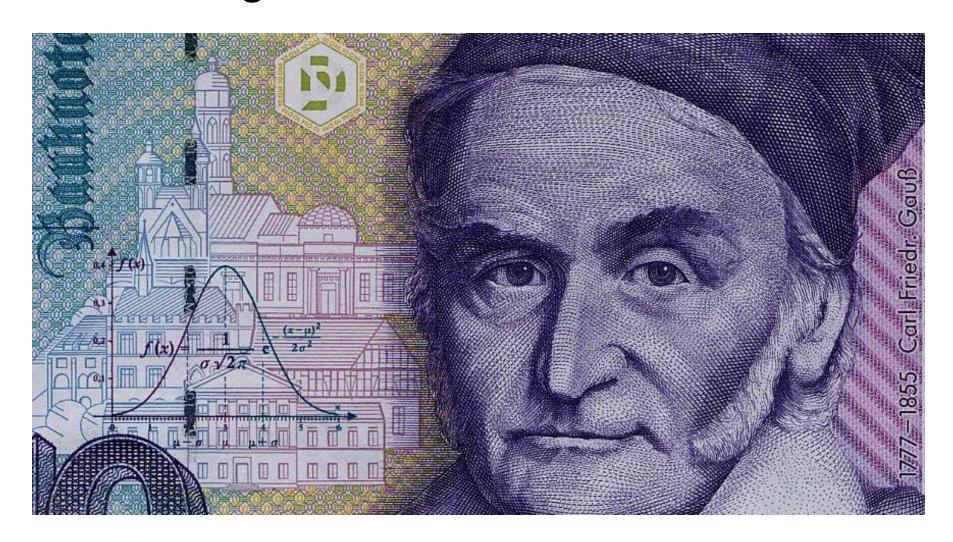
Beispiel in der Physikpraktikum:

Coulter Zähler

(siehe viel später...)



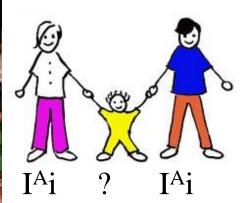
Verteilungen und Schätzungen Grundlagen der Wahrscheinlichkeitslehre



Zufallsexperiment

- Vorgang nach einer bestimmten Vorschrift ausgeführt
- (im Prinzip) beliebig oft wiederholbar
- sein Ergebnis ist zufallsabhängig (in der Natur ist es immer!) Es gibt eine eingebaute Unsicherheit in der Natur.
- bei mehrmaligen Durchführung des Experiments beeinflussen die Ergebnisse einander nicht

Roulett



Blutgruppenversuch

Elementarereignisse

die einzelnen, nicht mehr zerlegbaren und sich gegenseitig ausschliessenden Ausgänge oder Ergebnisse eines Zufallsexperimentes

Ereignismenge, Ereignisraum (Ω)

Reihe aller möglichen Elementarereignisse. Z.B:

beim Würfelspiel:

$$\Omega$$
 = {1, 2, 3, 4, 5, 6}

beim Münzenexperiment: Ω = {Zahl, Kopf}

beim "Blutgruppenversuch": $\Omega = \{I^A I^A, I^A i, iI^A, ii\}$

Wahrscheinlichkeit

Bernoulli (1654-1705), Laplace (1749-1827) (klassische Wahrscheinlichkeit)

Bei einem Zufallsexperiment, was endlich viele Ausgänge hat, die (zB. wegen Symmetriegründen) **gleichwahrscheinlich** sind, die Wahrscheinlichkeit eines Ereignisses (*E*) ist:

$$p(E) = \frac{\text{Anzahl der für } E \text{ günstigen Elementarereignisse}}{\text{Anzahl aller gleichmöglichen Elementarereignisse}}$$

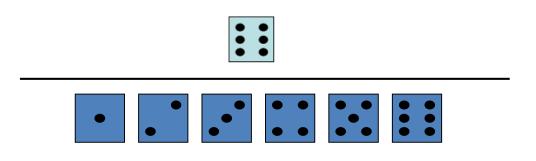
Dabei denken wir, das alle interessante Ereignisse eigentlich aus Kombinationen verschiedener Elementarereignisse aufbaubar sind, der Anzahl wovon kann auch sehr gross sein (wie im Lego-Spiel).

$$p(E) = \frac{g}{m}$$
 günstig

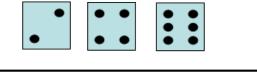
Beispiele

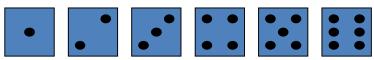
Würfelexperiment:

$$p(6) = \frac{1}{6}$$



$$p(gerade\ Zahl) = \frac{3}{6}$$





Münzenexperiment:

$$p(Kopf) = \frac{1}{2}$$

Statistische Wahrscheinlichkeit: oft sind die Elementarereignisse NICHT gleich wahrscheinlich!

Zufallsexperiment ------

Ereignis A

The state of the s

Ereignis B

Gefälschte Münze?

Tritt bei n-maliger Durchführung eines Zufallsexperimentes ein bestimmtes Ereignis \mathbf{A} k-mal auf, so bezeichnet man die in langen Versuchsreihen zu beobachtende relative Häufigkeit als Wahrscheinlichkeit, $p(\mathbf{A})$:

$$p(A) = \frac{k}{n}$$

Wenn n -> unendlich

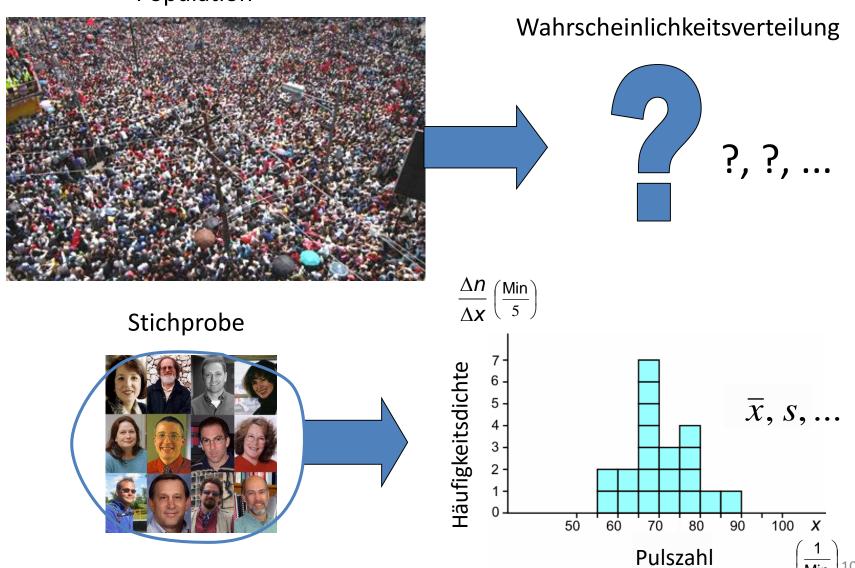
Eigenschaften der Wahrscheinlichkeit

$$\rightarrow$$
 $0 \le p(A) \le 1$

- \rightarrow p(sicheres Ereignis) = 1
- \rightarrow p(unmögliches Ereignis) = 0

Verteilungen

Population

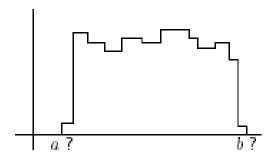


Verteilungen

Wie kann man die theoretische Verteilung bestimmen?

Vermutung

(nach dem Histogram)



Gleichverteilung?

Modellannahme

Laplace-Prinzip:

wenn nichts dagegen spricht, gehen wir davon aus, dass alle Elementarereignisse gleich wahrscheinlich sind

Laplace-Experiment:

es meint ein Zufalls-Experiment bei dem davon ausgegangen wird, dass jeder Versuchsausgang gleichwahrscheinlich ist

Gleichverteilung der Elementarereignisse

Klassifizierung der Verteilungen

- diskrete Verteilungen
- diskrete Gleichverteilung
- Binomialverteilung
- Poisson Verteilung
- •

- kontinuierliche Verteilungen
- kontinuierliche Gleichverteilung
- Normalverteilung
- Chi-Quadrat Verteilung
- t-Verteilung
- •

diskrete Zufallsgröße

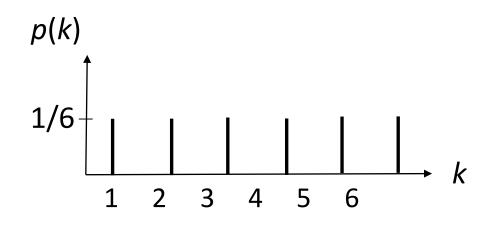
zB: Anzahl der Kranken, Augenzahl des Würfels kontinuierliche Zufallsgröße

zB: Blutdruck, Körperhöhe,...

Diskrete Gleichverteilung

Beispiel:

Wertebereich	1	2	3	4	5	6
Wahrscheinlichkeit	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$



$$p(k) = \frac{1}{6}, \quad k = 1, 2, ..., 6$$

weitere Beispiele:

Würfelexperiment mit einem Ikosaeder

Lageparameter der Verteilung

Es sei X eine diskrete Zufallsgröße mit Werten x_1, x_2 ... dann heisst

$$\mu = \sum_{i} x_{i} p(x_{i})$$

Erwartungswert von X.

Der Erwartungswert gibt denjenigen Wert an, den man als Mittelwert (durchschnittlichen Wert) über viele Versuchswiederholungen "erwarten" kann.

Dabei ist es durchaus möglich, dass der Erwartungswert bei keinem einzigen Versuch realisiert wird oder sogar überhaupt nicht vorkommen kann.

Erwartungswert und Durchschnittswert

$$\mu = \sum_{i} x_{i} p(x_{i})$$

$$\overline{x} = \sum_{i} x_{i} h_{i}$$
Beispiel: 100 Würfelexperimente. 2,5,4,3,6,6,1,5,4,2,3...

Rel. Häufigkeit

Insgesamt:

X _i	$n_{\rm i}$	h_{i}
1	15	15/100
2	20	20/100
3	14	14/100
4	16	16/100
5	18	18/100
6	17	17/100

$$\frac{-}{x} = \frac{15 \cdot 1 + 20 \cdot 2 + 14 \cdot 3 + 16 \cdot 4 + 18 \cdot 5 + 17 \cdot 6}{100} =$$

$$=\frac{15}{100}\cdot 1+\frac{20}{100}\cdot 2+\frac{14}{100}\cdot 3+\frac{16}{100}\cdot 4+\frac{18}{100}\cdot 5+\frac{17}{100}\cdot 6=3.53=$$

$$= h(1) \cdot 1 + h(2) \cdot 2 + h(3) \cdot 3 + h(4) \cdot 4 + h(5) \cdot 5 + h(6) \cdot 6 \rightarrow$$

$$\xrightarrow{n \to \infty} P(1) \cdot 1 + P(2) \cdot 2 + P(3) \cdot 3 + P(4) \cdot 4 + P(5) \cdot 5 + P(6) \cdot 6 = \mu$$

*x*_i: Augenzahl

n_i: absolute Häufigkeit

h_i: relative Häufigkeit

$$\overline{x} \xrightarrow[n \to \infty]{} \mu$$

Streuung der Verteilung

Es sei X eine diskrete Zufallsgröße mit Werten $x_1, x_2, ...$ und mit dem Erwartungswert μ . Dann nennt man die Zahl

$$\sigma^2 = \sum_i (\mathbf{x}_i - \mu)^2 \, \mathbf{p}(\mathbf{x}_i)$$

als Varianz von X, ihre Wurzel als (theoretische) Streuung (σ).

$$s \xrightarrow[n \to \infty]{} \sigma$$

(Standardabweichung)

Normalverteilung

Verteilungsdichtefunktion:

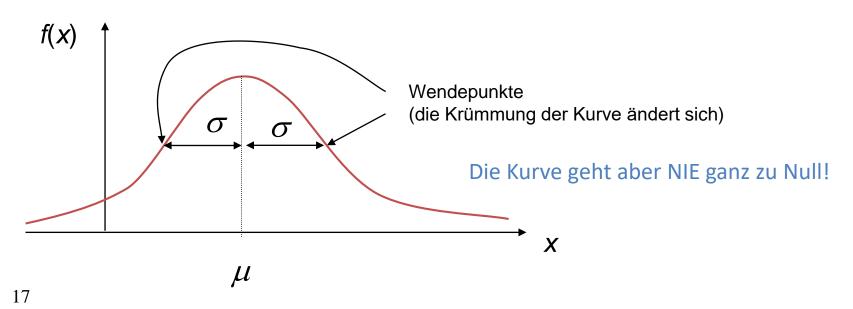
Parameter der Normalverteilung:

Erwartungswert: μ

Streuung: σ

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Oberfläche unter der Kurve = 1. (gilt für alle verteilungsdichtefuntionen!)



Normalverteilung (Gauss-Verteilung)

für die dargestellte Funktion: $\mu = 3$, $\sigma = 1$

DL0998939U1

Deutsche Bundesbank

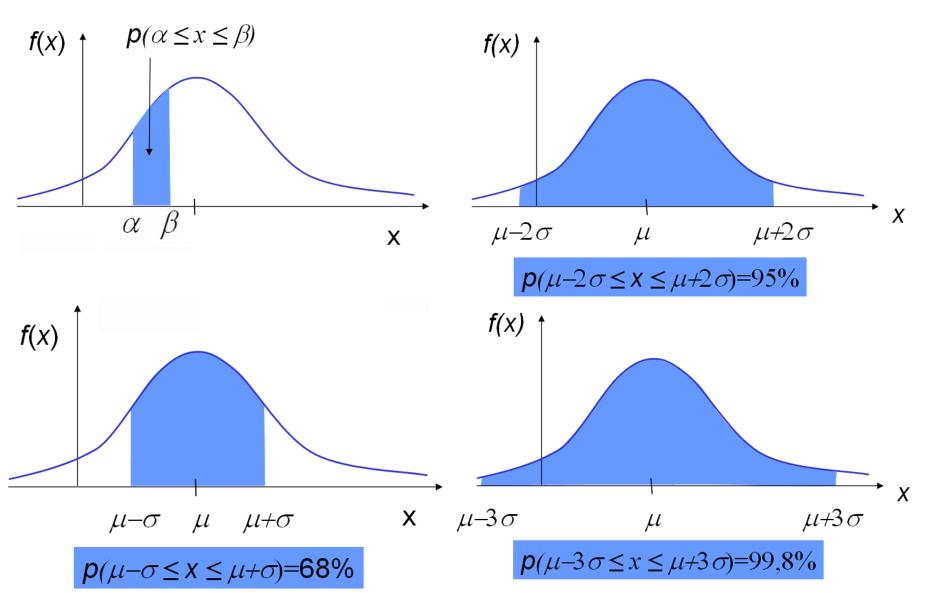
Litury

Frankfurt am Main

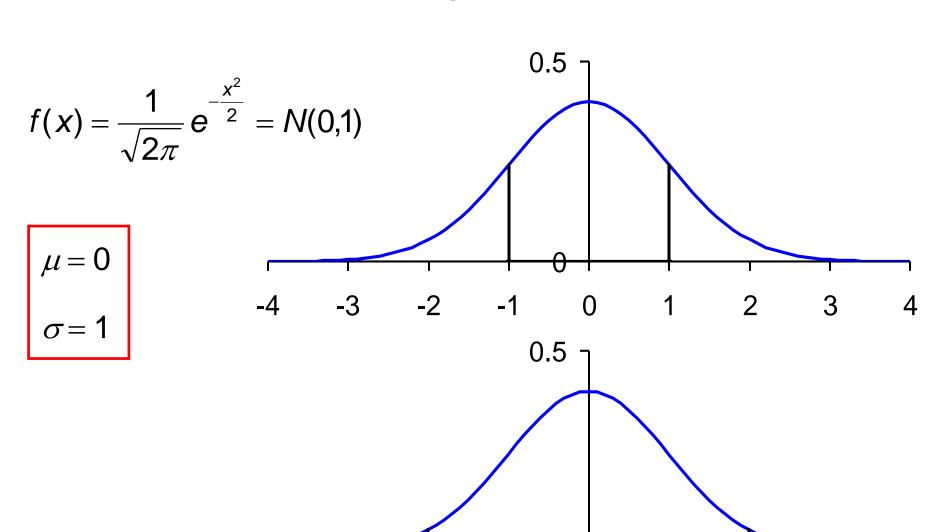
1. Oktober 1993

Normalverteilung

Wahrscheinlichkeit ist eine Oberfläche unter der Dichtefunktion!



Standard - Normalverteilung



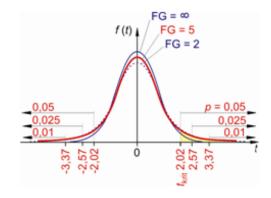
1. STATISTISCHE TABELLEN

t-VERTEILUNG

	p (Irrtumswahrscheinlichkeit, einseitiger Test)						
Freiheits-	0,4	0,25	0,1	0,05	0,025	0,01	0,005
grad (FG)	p (Irrtumswahrscheinlichkeit, zweiseitiger Test)						
(2 0)	0,8	0,5	0,2	0,1	0,05	0,02	0,01
1	0,325	1,000	3,078	6,314	12,70	31,82	63,65
2	0,289	0,816	1,886	2,920	4,303	6,965	9,925
3	0,277	0,765	1,638	2,353	3,182	4,541	5,841
4	0,271	0,741	1,533	2,132	2,776	3,747	4,604
5	0,267	0,727	1,476	2,015	2,571	3,365	4,032
6	0,265	0,718	1,440	1,943	2,447	3,143	3,707
7	0.263	∩ 711	1 4 1 5	1 895	2 365	2 998	3499

25	0,256	0,684	1,316	1,708	2,060	2,485	2,787
26	0,256	0,684	1,315	1,706	2,056	2,479	2,779
27	0,256	0,684	1,314	1,703	2,052	2,473	2,771
28	0,256	0,683	1,313	1,701	2,048	2,467	2,763
29	0,256	0,683	1,311	1,699	2,045	2,462	2,756
30	0,256	0,683	1,310	1,697	2,042	2,457	2,750
40	0,255	0,681	1,303	1,684	2,021	2,423	2,704
60	0,255	0,679	1,296	1,671	2,000	2,390	2,66
120	0,254	0,677	1,289	1,658	1,980	2,358	2,617
00	0,250	0,674	1,282	1,645	1,960	2,326	2,576

t-Verteilungsfamilie



"Glockenkurven"

Je größer ist der Freiheitsgrad, desto schmaler ist die Kurve.

Also der Freiheitsgrad ist ein Zahl um eine bestimmte Kurve auszuwählen.

$$t_{\infty} \equiv N(0,1)$$

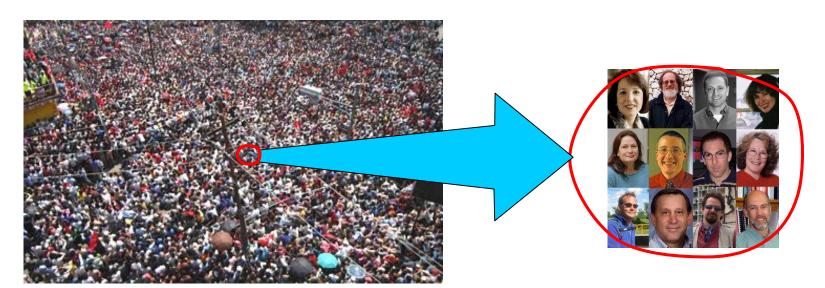
Zentraler Grenzwertsatz

- •Es seien $x_1, x_{2,...}x_n$ unabhängige Zufallsgrößen, die alle derselben Verteilung haben.
- •Die Verteilung der Summe nähert sich einer Normalverteilung, wenn $n \to \infty$. $S_n = \sum_{i=1}^n x_i$
- •Die Summe der Verteilungsfunktionen konvergiert gegen eine Normalverteilung auch wenn die einzelnen Zufallsgrößen keine Normalverteilung haben.

•Biologische Bedeutung:

Wenn ein Parameter (zB. Körpergröße, Blutzuckerkonzentration) durch viele anderen Faktoren (Zufallsgrößen) beeinflusst wird, folgt dieser Parameter einer Normalverteilung.

Analytische Statistik

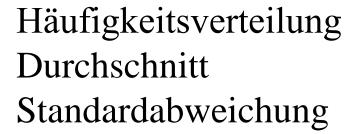


Population

N = ",unendlich"

Theoretische Verteilung Erwartungswert Theoretische Streuung

n = endlich



Aufgabe der Schätztheorie

Aus einer Stichprobe Schätzwerte für

- Wahrscheinlichkeiten
- Erwartungswert
- Streuung
- oder andere Parametern einer Verteilung zu ermitteln.

Typen der Schätzungen:

- Punktschätzung
- · Intervallschätzung

Punktschätzungen

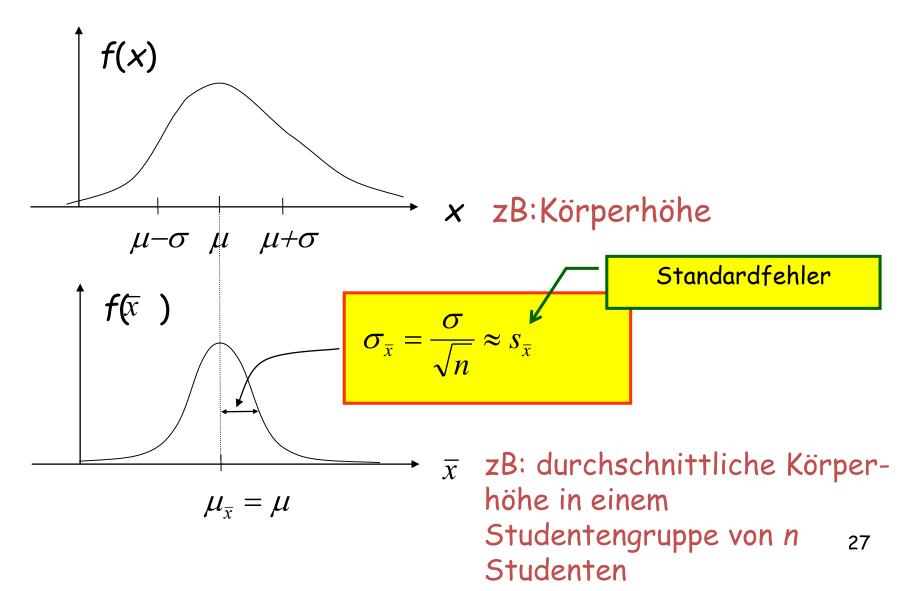
- Der Parameter wird mit einem Wert geschätzt.
- Relative Häufigkeit ist ein Schätzwert für die Wahrscheinlichkeit
- Durchschnitt
 ist ein Schätzwert für den Erwartungswert
- Standardabweichung ist ein Schätzwert für die Streuung
- Punktschätzungen sagen nichts über die Genauigkeit bzw. Sicherheit der Schätzung!

Intervallschätzungen

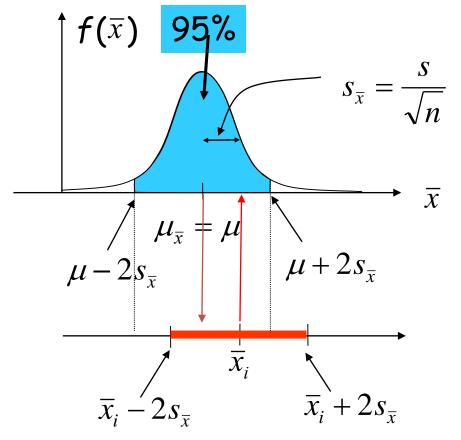
•Intervallschätzung oder Konfidenzschätzung gibt zu einer vorgewählten Sicherheitswahrscheinlichkeit γ , (Konfidenzniveau) ein Intervall (c_1,c_2) an, in dem der unbekannte Parameter (zB. μ oder σ) mit einer Wahrscheinlichkeit von mindestens γ liegt.

Zb.: Erwartungswert der Pulszahl ist bei 95% Konfidenzniveau: 74±6 ¹/_{Min}

Konfidenzintervall für den Erwartungswert



Konfidenzintervall für den Erwartungswert



 \bar{x}_i liegt mit 95% Wahrscheinlichkeit im Intervall

$$\mu - 2s_{\overline{x}}$$
 $\mu + 2s_{\overline{x}}$

Und gleichzeitig mit 100-95= 5% Wahrscheinlichkeit irgendwo draussen!

wenn
$$\mu - 2s_{\bar{x}} \le \bar{x}_i \le \mu + 2s_{\bar{x}}$$
 dann

95% Wahrsch.

$$\overline{x}_i - 2s_{\overline{x}} \le \mu \le \overline{x}_i + 2s_{\overline{x}}$$

95% Wahrsch.

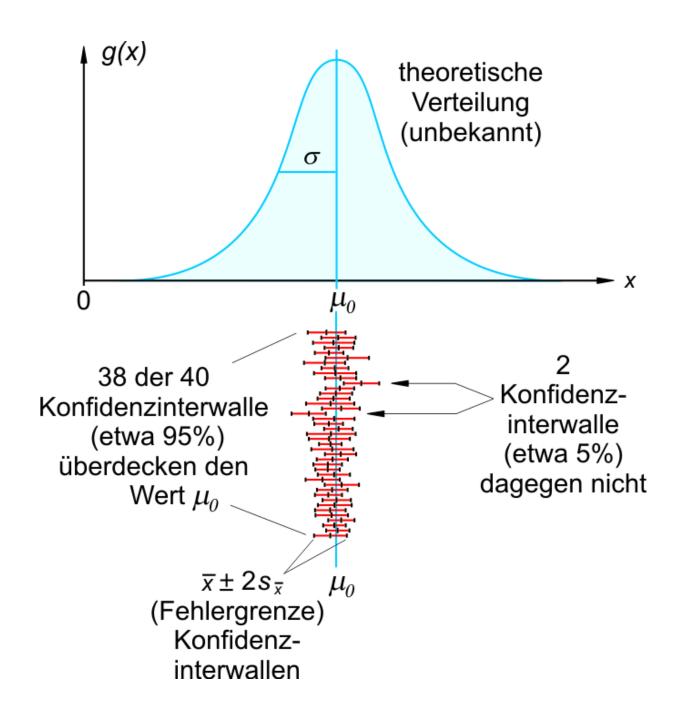
Konfidenzintervall für den Erwartungswert

In dem Intervall $\bar{x}-2s_{\bar{x}}, \ \bar{x}+2s_{\bar{x}}$ Konfidenzintervall liegt der Erwartungswert (μ) mit 95% Wahrscheinlichkeit

Eine ähnliche Ableitung gibt: μ liegt -mit 68% Wahrscheinlichkeit im Intervall: $\bar{x} - s_{\bar{x}}, \ \bar{x} + s_{\bar{x}}$

- mit 99,7% Wahrscheinlichkeit im Intervall:

Je größer ist die Sicherheitswahrscheinlichkeit desto breiter ist das Konfidenzintervall!



Zusammenfassung der Schätzungen

•Punktsätzungen:

Stich- probe	Grund- gesamtheit
_	$\rightarrow \mu$
s —	→ σ
n —	\longrightarrow ∞

Intervallschätzung für den Erwartunswert:

$$\bar{x} \pm 2s_{\bar{x}}$$
 95%