Structure and dynamics of
biomolecular systems

mass spectrometry, IR spectrometry, X-ray diffraction, MD simulation

Erika Balog



J4Q

Giant Earthworm

e R

Y @
=\ = | Dodo Bird
., '
Human Rafflesia e

100.0




- analytical technique producing spectra of the masses of the atoms or molecules in a sample. The spectra are used to determine the
elemental or isotopic signature, thereby elucidating the chemical structures of molecules.
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lonization of biological samples
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Electrospray ionization MALDI: “matrix-assisted laser desorption/ionization

Solvent containing analyte
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(1) decompositions to droplets,
(2) solvent evaporation - smaller droplet - the laser light is absorbed by the atoms/molecules of the matrix.
-> greater surface charge, . L
- used for investigating large molecules.

(3) Coulomb repulsion = droplets explode -
ionized, accelerated molecules .



Methods of mass analysis 1.

Magnetic method

m/q} =45
m/q} = 44

Deflection depends on

mass-to-charge ratio (m/q):

- magnet particles with smaller mass
are on path with smaller
radius.

lon source

ﬁLorentZ = Q(E + U X §)

E=electric field, vxB=vectorial product of speed and
magnetic induction
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r= ; B from which the mass-charge ratio (111/g) can be determined.

instead of m/q usually m/z is used, where z=g/e (dimensionless number).



“Time-of-flight” method

M

ethods of mass analysis 2.
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Applications of mass spectrometry

1. Protein analytics (proteomics) 3. Real-time tissue analysis (“onco-knife”)
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2. Diagnostic screening:
Metabolic diseases (from 1 drop of blood)
e.g., phenylketonuria (PKU)




- measures vibrations of molecules.

Vibration: periodic motion along the axis of the covalent bond
Rotation: periodic motion around the axis of the covalent bond

Examples of vibrational
motion in the triatomic
methylene group (-CH2-):

N

Asymmetric stretching

Energy of a molecule: Born-Oppenheimer approximation

E =E +E +E,

total
. Sl
* Types of energy states are independent (not coupled).
¢ Energy states are non-continuous, but discrete.
e Transition between states involves packets (quanta) of energy.
¢ Scales of transition energies between different states are different.
So

p o p

.||||h.

Symmetric stretching Scissoring
~100x ~100x
Scales of transition energies: Ee > EV > Er

~3x10°J (~2eV) > ~3x102') > ~3x1023)

uwwvis > midIR > farlR



Molecular vibrations

Molecule: mass connected by a spring

e two-atomic molecule (e.g., CO) A

. . 1 D AE
e masses (ml1, m2): atomic nuclei & \ f=— - (see: Resonance lab)
(me<<mnucleus) 0 ;n — > 2n Mrea h
e spring: covalent bond connecting distance of
the atoms nuclei
e distance-depedence of interaction _omym,
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IR spectroscopy - measurement
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Applications of IR spectroscopy

Lipid Protein Nucleic acid Carbohydrate
e |dentification of chemical species (e.g., intermediate and ﬁf}\'-f . (N
end products of reactions) %, sﬁ '.
e Determination and verification of molecular structure 10 i
* Detection of metabolites Eﬂ
¢ In proteins, both backbone (amide vibrations) and side 08

)

Amide Il

chain (ligand binding) behavior can be followed (e.g.,
denaturation, folding, aggregation)

¢ In nucleic acids, the bases, the sugar and phosphate
components can be studied independently

¢ In lipids, phase transitions (e.g., order-disorder) can be
followed

e N.B.: in agueous samples, due to water absorption, heavy
water (D20) is used instead.
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Foundations: wave diffraction and interference

Slit smaller or comparable with the
wavelength

Waves in phase (¢=0):
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Molecular structure
dnaci: 5.64 A

~1A

Which kind of wave should be used for a molecular lattice? 0.01-10 nm
Axray: 0.01-10 nm = 0.1-100 A

2dsind =kA —— d=... more difficult...

from the X-ray interference pattern:
spatial coordinates of atoms —— spatial structure of the molecule
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Solving molecular structure with x-ray crystallography

dsDNA Globular protein: Molecular complex:
myoglobin ribosome
w1
hi
p

g tilt of helix
h-3.4 A distance between bases
p-34 A repeat unit of helix (one pitch) ~1200 atoms

.
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X-ray crystallography: FTIR:

3D structure of the molecule — static image bond vibrations
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Functional motions

of the molecule? :
center of mass

spring constants

atomic coordinates

Molecular Dynamic (MD) simulations

calculates internal motions of the molecule



Aim:
- starting from experimental data to map the internal motion of macromolecules (to understand their function),
- to give atomic interpretation to experimental results.

Phosphoglycerate kinase (PGK)



RalF:

- effector of the virus causing legionella disease (sever pneumonia).

Experiment:
- inactive crystal structure,
- it gets activated by attaching to the membrane (aa denoted by orange).

But: proteins attached to the membranes can not be crystalized.
The structure of the active form can not be crystalized.

How does it work?

Simulation



complementarity of experiment and simulation



