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Sedimentation I.

Sedimentation is the process
of allowing particles in suspen-
sion to settle out under the
effect of a force.

Driving forces: gravity, centri-
fugal acceleration, electro-

magnetism.
Supernatant S S
/// (liquid) e .
" L Moy ~“\‘\°
&
Pellet 2 18 AD 1
(precipitate, sediment) Evolution of Danube delta (Romania) map Danube delta from space

htp: I eppendorf.
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Sedimentation— II.

Physical basis:

Drag force (fluid resistance) - a force acting Bouyant force (buoyancy) - an upward force
opposite to the relative motion of any object F F exerted by a fluid that opposes the weight of a
. . . . d b . . .
moving with respect to a surrounding fluid. partially or fully immersed object.
1 Fy=po-V-g g PO
Fa=f-v f:shape factor; f =-— Fp=m-g
u m p
@ ) o v: speed V==
This approximation v = P)
is valid only for low | ,,. mobility = — g po: density of the medium
velocities! F
J p:density of the particle
Particle Gravity f : . .
for a sphere: sediments in ravity torce V:particle volume
1 a lower F=m- m: particle mass
U= e density fluid g g

m
g: gravity constant (9.8 ﬁ)
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Physic

Sedimentation — IIl.

al basis:

Newton’sll. law: XF =m-a

iy SE

EGY

force equilibrium (a=0) Fd Fb
F
// / 9
/ t
Particle velocity increases in time Particle
. I sediments in
until the force equilibrium (or the a lower
bottom of the vessel) is reached. density fluid

MMELWEIS

ETEM 176¢

SF=F—F,—F,

At force equilibrium: £F =0
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Sedimentation vs. Brownian motion

Problem: Brownian motion

For small particles
Brownian motion prohibit
settling. Thus gravity-driven

sedimentation will not work.

P

. SEMMELWEIS
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Particle Diameter, | Brownian | Sediment
(SC) microns velocity, motion
m/'s velocity, m/s
RBC 8 354107 [ 35%10°
Latex ball 4 5.5%107 1.7%10°
Latex ball 2 1.6*10™ 4.3%107
Latex ball 1 4.4%10° LI1*10
Milk fat | 1 5%107 2.7%10°
particle
Latex ball 0.5 1.2%107 2.7%107

Chiceaet al. Romanian J. Biophys. 2010
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1.0E+02

o - - Distance traveled by sedimentation P

—— rms Brownian displacement .

1.0E400

1.0E-01

1.0E-02

1.0E-03

Particle displacementin 1 s (cm)

1.0E-04

1.0E-05
0.001

0.1 1 100

Particle diameter (pm)

Comparison of the root mean square Brownian
displacement of a spherical particle (1000 kg/m3) and
the distance traveled by sedimentation in air (p=1 atm;

T=293 K) Gensdarmes F. Nanoengineering, 2015
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Centrifugation

Physical basis: Sedimentation is forced by spinning

Fe
Angular velocity: se;?{gﬁ'@ in
a lower
Ag A¢ : angle taken by rotating object density fluid
At At : time

EGYETEM 176
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— theory I.

Drag force:

Fd=f-v

Bouyant force:

Po

Fb=m-a-?=m-r-w Po

p

2,

Centrifugal force:
acceleration felt by the particle

FF=m-a
F=m-r-w?

a=r-w?

dist(:nXe from center (rotational radius)

Department of Biophysics and Radiation Biology

Centrifugation

At force equilibrium:  F; = F, — F},
Po
f.v:m.r.w2.<1__>
p
v m
= 2:—-(1—&)
r-w* f P

Sedimentation coefficient (S):
ratio of a particle's sedimentation

velocity to the applied

f

Theodor
Svedberg
1884-1971
1926: Nobel Prize
for Chemistry

acceleration causing the
sedimentation.
Unit: 1 Svedberg (Sv) =103 s

.. SEMMELWEIS
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— theory II.

An example: ribosome sedimentation

708 805
MW 200000 MW 4,200,000
505 / \ 308 605 / \ 408
y
Li/ Yy
MW 1,600,000 MW 900,000 MW 2,800,000 MW 1,400,000
SSIRNA | 23S rRNA 165 RNA SSTRNA | 285 rRNA  5.85 rRNA 185 rRNA
P = =
120 120 160 1900
nucleotides 900 1540 nucleotides| nucleotides
nucleotides nucleotides nucleotides
nucleotides
34 proteins 21 proteins ~49 proteins ~33 proteins
PROCARYOTIC RIBOSOME EUCARYOTIC RIBOSOME
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Centrifugation — theory Il.

At force equilibrium:  F; = F, — F, Further examples
_ 2.(1_P0 Sedimentation Diameter
fro=morow P Subcellular entity coefficient (5) (um)
/ Nucleus 100 to 107% 3-12¢
Mitochondria 10 to 5 = 10" 0.5-4¢
v m Po
SE—ZZ—-<1——> Lysosomes 4= 100to 2 = 10% 0.5-0.8%
r-w f p Peroxisomes 4 = 10% 0.5-0.8*
) ) o Viruses 42 to =1000 0.02-0.4
Sedimentation coefficient (S): Nucleic acids (free) 3.5 t0 100 n/a
ratio of a particle's sedimentation Ribosomes 80 0.025
) . . *Hinton and Mullock (1997)
" i velocity to the applied 1Schmidt (1973)
s 5 ; : fLuttmann et al. (2006)
‘4 : acceleration causing the
Theodor 9 Griffith (1994)
Slgaef_?g;g Sedlmentatlon' Lawrence, Janice & Steward, Grieg. (2010). Purification of viruses by centrifugation.
1926: Nobel Prize Unit: 1 Svedberg (Sv) =10 s
for Chemistry

Department of Biophysics and Radiation Biology

Centrifugation — aspects - |.

Centrifugation: An analytical/preparatory technique used for the separation of particles from a solution/suspension

according to their size, mass, shape, density, density and viscosity of the medium, temperature and rotor speed.

Rotor types:

fixed-angle rotor

[
e —
Centrifugal force

before during spin after Sedimentation Path
of particle
Sedimentation

swinging-bucket rotor Pellet deposited path of particle
with that surface

Pellet deposited
at an angle
Sedimentation in
- Horizontal Rotor Sedimentation in fixed angle rotor
' = acceleration B
—_—
on (. N
(S—— _—

v

bnong

www.beckman.com/resources/technologies/centrifugation/principles/rotor-types

start stop

Gallagher SR. Curr. Protoc. Essential Lab. Tech. 9: 5.1.1-5.1.12.
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EGYETEM
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a
RCF =—
g

Simplified formula: RcE

https://handling-solutions.eppendorf.com/

Centrifugation — aspects - II.

Relative centrifugal force (RCF):

r-w?

— revolutions per minute

max

RPM)Z

= 1,118 - 1y (—1000

max.rotational radius

Nomograph for RCF determination.

5000 3 50000
7000 -+ 700000

6000 —+ 600000
] 5000 -+ 300000

4000 + 400000

4500 § 45000

4000 1 40000

RCF % 2200g $000 T 300000 ason- Tt 35000

200000
000 3000 + 30000

" 1500 - 150000
15 -
R = 16cm

° M- 3500rpm | 1000 100000 2500 | 25000
" 8001 80000
13 700 - 70000
12 600+ 60000

500 50000 2000 1 20000

100+ 40000

10 RCF & 20000 g

30000

I
/0 Bl = L= =
, i \\ 1’/’ ™

{ < > ) =
™ : i
| | i
! F'max !
- Fr

RCF (x1000)

- 15000

1400 + 14000
: 4 73 150 T 15000 1300 + 13000
R=8cm
7 N = 15000rpm 1oL 10000 1200 + 12000
oo 4 11
nl ww o
N 0L 6000 1000 + 10000
so 5000 900 8000
5 40 4000
800 8000
s 000
700 | 7000
4 20 2000
18- 1500 600 5000
1m0 1000
b 500 -1 5000

https:/ fwww. centrifuge.jp/g — force — calculation/nomograph. html
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Centrifugation — categories — I.

Analytical centrifugation Preparative centrifugation
To study fundamental properties (mass, shape, | To process biological samples for further analysis.
Aim interactions) of purified macromolecules or To obtain/purify a particular component of a sample
supramolecular assemblies. (pelleting).
» Determination of the purity (|nc|pd|ng the . Subcellular fractionation:
presence of aggregates) and oligomeric state
of macromolecules; « Affinity purification of membrane vesicles;
+ Determination of the average molecular * Separation of DNA components;
Examples mass of solutes in their native state; «  Protein purification;
» Study of changes in the molecular mass of «  Colloid separation;
supramolecular complexes; « Virus purification;
» Detection of conformation and
conformational changes.
« Sedimentation velocity method; +  Differential centrifugation;
Methods ) ) I . - Density gradient centrifugation (Rate-zonal or
» Sedimentation equilibrium studies isopycnic)

.. SEMMELWEIS

EGYETEM 176
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Centrifugation — categories — II.

Centrifugation

Ultracentrifugation

* Upper RCF limit approx. 65 000 g

High RCF-s (up to 1 000 000 g) - special rotors
are needed

At such high RPM-s friction would cause

Properties | = Refrigeration and vacuum are optional. overheating and sample and/or device damage.
* Fractions are collected after the run. + Refrigeration and vacuum are mandatory.
* In-process detection
* Separating cytosolic components from cell «+ Separating ribosomes, membrane vesicles,
Examples nuclei; extracellular vesicles, proteins, DNA, viruses,
» Separating microparticles from a suspension. etc.
Use * Mostly preparative * Analytical OR Preparative

=y SEMMELWEIS

ECYETEM
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Centrifugation — device examples

Centrifugation

Ultracentrifugation

Eppendorf 5427R

*  RPM: max. 16.220 +  RPM: 800-13.400
*  RCF: max: 25.000 x g * RFC: max. 12.100 x g
+ -10°Cto40°C * Room temperature

30 kg

Eppendorf Minispin

4,3 kg

Beckmann Coulter Optima XPN
*  RPM: max. 100.000

* RFC: max. 802.400 x g

+ 0°Cto40°C

+ 485kg

. SEMMELWEIS

EGYETEM
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Sedimentation velocity method

Aim: To determine the mass of a
molecule/particle

ference
T
7 mm. e
/ 1/ diffraction
i A ' grating Sample
/7 .I
yyar Incident
/ // i ! hght detector
o

Sample/reference
cell assembly
TVS Rotor

T

Imaging system for
radial scanning

slit {(2nm)

u

Xenon
Mash lamp

Photomultiplier tube

QEMMFI\\ EIS

EGYETEM

Sample meniscus,

Sample solution

Solvent meniscus Reference (blank)

Sample meniscus.

K T 1‘1 LI B
Lnau..d,.)

F Baseline

Absorbance (0.D.)

-0.50

L e L e

Plateau

Solvent meniscus

61¥62 63 64 65 66 67 68 63 70
Radius {cm)

Somdeb M. Methods in enzymology 469 (2009): 209-36 .
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Figure 1: Two-sector centerpiece

Meniscus
Depletion
Boundary

Sample

Blank  Sample

Figure 25 Depletion during AUC

>
e
(U]
Tlme 1 Tlme 2 Time 3 Time 4
Py ~f m
IS 'S S
~

https://www.coriolis-pharma.com/analytical-
services/aggregate-analytics/analytical-ultracentrifugation-
sv-auc-se-auc

Sedimentation velocity method — II.

1. Ultracentrifuge to determine S from v and r-w

: v m

f

(-

fS

'(1)2

2. Expressmas: m=

Po
1 — Y
-2
3. To calculate m you need to know f, p and p,
* Py : can be calculated as _ Mo
Vo

* p: can be obtained by density gradient centrifugation

(see later)

« fcan be derived from diffusion coefficient (D):

kT _ RT
~D ND

QEMMFI\\ EIS

EGYETEM

4. Express m as:

RTS

m=————/—
Po

ND(1 -+
a-2

Caveat: S usually decrease with concentration — S should

be extrapolated to O concentration to get the real mass

6.5 T T

6.0
5.5
5.0
4.54
4.0+
354
3.0
2.5
2.04
1.5

s[S]

antibody 1 ©
antibody 2 @

tk,=53mL/g,5,=5518 .
:k,=52mljg, s =518S 8,

© Monomer 4
- linear fit

e

20
proteil

2 0

40 60 80 100 120 140

n concentration [g/L]

Schilling, K. (2015). PLoS ONE. 10. e0120820. 10.1371/journal.pone.0120820.
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Differential centrifugation

Aim: To separate components of a suspension

Homogenization Differential Centrifugation (in each step)
—_— >
[~ Supematant [~ Superatant — Supernatant —
transferred transferred transferred
1000g | | |_20000g |° ./ || 100000 | || 150000g
1min - =/ | 45min" | /11" gomin |. .|| 3hs
i Foliy .
o_"flﬂ 'l:‘.' <
# ’.- # \J B
f b.-,r'. 1 ] L T -

Tissue Cells Homogenate  Pellet containing  Pellet containing Pellet containing Pellet containing
nuclei and cellular mitochondria and microsomes ribosomes
debris chloroplast (if plant
cell)

https://www.broadlearnings.com/lessons/centrifugation/
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Density gradient centrifugation — |.

Rate Zonal Centrifugation

» Density gradient is formed in a centrifuge tube (e.g.:
sugars, polymers, CsCl)
Sample zone

» Density gradient — velocity gradient

* Sample is layered on the top (max. 10%)

» Particles sediment at different rates according to their size 2
(mass) and shape. 2 sty
i ) — o . £ gradiont
» Bands = particle fractions of identical mass/size (if density 8
of the particles are the same) or shape
* Asp > p, all particles sediment to the bottom if centrifuged -
1. Centrifuge 2. Sample 3. Under centrifugal
tube filled spplied force, particles
too |0ng with density  to xolp of move at different
. . gradient gradient rates depending
» Example: Separating of proteins and cellular organelles solution upon their mass

i ! SE]\'H\‘IFI J\FV EIS Department of Biophysics and Radiation Biology
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Density gradient centrifugation — II.

Isopycnic Centrifugation

Isopycnic = equal density

Homogeneous mixture of the sample and gradien-forming
material is placed in the tube

Density gradient is formed during spinning

Particles sediment or rise until they reach a layer of
identical density.

Bands = patrticle fractions of identical density

Mass (size) and shape affects the sedimentation rate but
not the final position

After reaching equilibrium bands keep their position

Example: Nucleic acids in CsCl

~————————— Centrifugal force

~

1. Uniform . Under centrifugal

mixture of force, gradient
sample and redistributes
gradient and sample

particles band
ot their
isopycnic positions

E: ! SENH\JFI W ]‘:[S Department of Biophysics and Radiation Biology
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Electrophoretic methods

Bases of electrophoresis

Electrophoresis: translation due to electric field
Biological molecules — usually charged at physiological
conditions

A charged molecule/particle will migrate in electric field
Particles with asymmetric charge distribution become
oriented in the field.

Particles move with increasing velocity until F anf F
equilibrates — but not an equilibrium method

Charges of the medium surrounds the travelling particle —
largely affects mobility (retardation)

Particles separate from each other due to their different

mobility

Electric field [V/m]

Electrostatic force Drag force
F =ZeE Fa=f-v
O = &

Charged particle translate toward electrode of
opposite charge in an uncharged solvent medium

_l At force equilibrium:
ZeE=f-v
——

t

Electrof ti —U—Ze m
ectroforetic uel—E—f v

mobility:
(Uer=Ze-u)

i ! SE]\'H\‘IFI WEIS Department of Biophysics and Radiation Biology
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Electroforetic methods — II.

Free flow electrophoresis

* Matrix-free electrophoretic separation technique

* Fluid flows between two plates to form a channel

» Perpendicular high voltage electric field is applied

* Laminar flow — fluid layers of different composition (pH;
ionic strength etc.) can be applied

» Particles separate due to their charge density and/or
isoelectric point

» Separation range: ions to cells

» Application: high-resolution separation of protein
complexes, membrane proteins, protein and antibody

isoforms, cells, subcellular compartments, etc.

¢y SEMMELWEIS

EGYETEM 176

sample

carrier medium

cathode -

electrical field

bottom plate
top plate

Kwon JS., Bowser M.T. (2016Encyclopedia of Nanotechnology. Springer, Dordrecht

Department of Biophysics and Radiation Biology

Electroforetic methods — III.

Gel electrophoresis

* Matrix-based electrophoretic separation technique

* Semi-solid matrix (agar, polyacrylamide, starch..) — prevents
heat convection (caused by electric field) and acts as a sieve —
slows down the motion of particles.

* Small sample volumes

» High reproducibility

» High voltage electric field is applied

+ Particles migrate and separate due to their size and charge.

« Separated fractions can be fixed, stained evaluated or extracted
from further use

« Application: separation and analysis of macromolecules (DNA,

RNA and proteins) and their fragments

EGYETEM 176

.. SEMMELWEIS

Power supply

sample
wells

© electrode
—
—
—

direction
of movement @ electrode

buffer /

solution Electrophoresis tank

LGenome Research Limited

Department of Biophysics and Radiation Biology
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Electroforetic methods — IV.

Gel electrophoresis - process

Gel cassette
Hamilton

Anode Cathode )
Sy"nge

buffer buffer

Negative

electrode 0 5 .
I = chamber ample

Cathade () i ’
'*'LI'N'J"F‘ ‘ il;"l_'L‘u'll'll'

Tank Power source

Anode [+) = 4

Saparate protein
bands

Kwan JS, Bowser M1 (Z0l6Encyclopedia of Nanotechnology. Springer, Dordrecht

SDS-PAGE of recombinant E. coli RecA Protein

i ! SEl\f'H\fIF] W ]’1[5 Department of Biophysics and Radiation Biology
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Gel eIeCtrophoreSIS B geIS 3 different restriction g’
enzyme digests of E
Agarose (0,5-3%) plasmid DNA G
e 8
» Natural polysaccharide polymers extracted from | il
- —_—
seaweed (macroalgae) == R
* Non-uniform pore-size -
» Easy to handle S e
«  Optimal for proteins (>200 kDa); DNA (from 50 bp) . Lol -
i |-
K=
Polyacrylamide E
& .
= Uniform pore size - T
» Polyacrylamide gel electrophoresis (PAGE) is used for SDS PAGE of proteins (adder at
separating proteins ranging in size from 5 to 2,000 kDa +
+ Proteins can be transferred onto a nitrocellulose or 1'3;/2'\‘,3';’2;‘2?;;‘939’2?53”‘;‘;'5;;”2:2; dgests runona
b ide. Thi i ker i ial 1 kb
PVDE membrane — Western blot Iargg:r"e The DNA size marker is a commercial 1 kbp

: ! SE]\'H\‘IPI JY\FV EIS Department of Biophysics and Radiation Biology
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Electroforetic methods — V.

Isoelectric focusing

» Certain macromolecules possess both acidic and basic
residues — their net charge varies according to pH of
their medium

» Isoelectric point: the pH at wich the molecule has 0 net

charge

-+ SEMMELWEIS

EGYETEM 176¢

) ® )
NH, *NH; NH,

. \ pK I o PKa | o

Alanine  cH;—CH—COOH == CH,;— CH—C00" ¥ CH;— CH—C00

cation zwitterion anion

0.5

isoelectric point

net charge
=1

-0.5

0 2 4 6 8 10 12 14
H

Generalic, Eni. "Isoelectric.” Croatian-English Chemistry Dictionary & Glossary.

Department of Biophysics and Radiation Biology

Electroforetic methods — VI.

Isoelectric focusing

» Certain macromolecules possess both acidic and basic
residues — their net charge varies according to pH of
their medium

» Isoelectric point: the pH at wich the molecule has 0 net
charge

» Electroforesis done in a medium with pH gradient —
macromolecules migrate due to elelctric field until they
reach their isoelectric point

» Here: equilibrium between diffuison and electrophoresis

* Molecules separate according to their isoelectric points

* High sensitivity

» Both for analytical and preparative purposes

* Used mostly for proteins

.. SEMMELWEIS

EGYETEM 176¢

(A)

Low pH +:><t—-! ; - S g High pH
(+) § =g 5> (=)

(B)

Low pH High pH
(+) _ (=)

Figure 3.1
Biachemisty,Seventh Edition
2012 W, Freeman and Company

Department of Biophysics and Radiation Biology
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2D- gel electroforesis

Equilibration
omz?LlI- i)
® [ )
. . e so i
[ ]
..0 [
c] ° g
g *
g . ®
itk N e °
2 L ]
5 -
2 ¢ e -
. e .
4
Protein 4 2;
extract IEF SDS-PAGE

https://www.creative-proteomics.com/blog/index.php/two-dimensional-gel-electrophoresis-2-de/

Electroforetic methods — VII.

MW

Meleady P. (2018) Difference Gel
Electrophoresis. Methods in Molecular
Biology, vol 1664.

Department of Biophysics and Radiation Biology

» Used to determine the mass of ions in gas phase
* pM-aM sample quantities — even for trace analytics
* Main parts:

» lon source: transfers molecules to gas phase and
ionizes them (eg.: Electron Spray lonization, ESI;
Matrix-Assisted Laser Desorption/lonization,
MALDI)

» Can be coupled to other analytical methods (LC-MS;
GC-MS)

Mass Spectrometry (MS)

Bases in nutshell An example:

Sample
enters Heater vaporizes
here  sample

lons accelerated

Electron beam

* Analyzer: accelerates the ions, separates them source
mased on m/z ratio using electric or magnetic field Magnetic field
deflects lightest
(eg.: quadrupole; Time-of-flight, TOF) ions most Detector
« Detector https://www.bronkhorst.com/int/blog-1/mass-spectrometry-and-mass-flow-control-a-closer-ion-them/

! SEl\rﬂ\'l} Department of Biophysics and Radiation Biology
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MS— lonization

Electron ionization (El)

» Sample is bombarded by electrons

» ,Hard ionization”: high energy elctrons — excessive
fragmentation

* Most useful for organic compounds (MW<600)

+ Formation of a molecular ion:

M+ e” > MY+ 2e”

» Electron beam is produced by thermionic effect and
acceleration in electric field.

» Advantages: simple, sensitive, fragments help molecule
identification, library-searchable fingerprint spectra

» Disadvantages: only volatile and thermally stable
molecules, excessive fragmentation, MW < 1000

» Frequently coupled with Gas Chromatography (GC-MS)

¢y SEMMELWEIS

ECGYETEM

methods I.

E|e¢ll’0ﬂ Beam
Dissociative Result

{}%Po s

Charged and Neutral Fragments

Precursor

Béo

Parent Molecule

|4|I

Non-dissociative Result

Ron

lonized Parent Molecule

By Evan Mason - Own work, CC BY-SA 4.0, h ikimedia

php?curid=37928204

Department of Biophysics and Radiation Biology

MS— lonization methods II.

Electrospray ionization (ESI)

» Sample to be analyzed is dispersed in a liquid

* Aerosol is produced

» High voltage is applied

« ,Soft ionization” — low propensity of fragmentation —
especially useful to produce molecular ions from

macromolecules.

» Advantages: accurate, fast, broad mass range, low
fragmentation

» Disadvantages: no structural information (in lack of
fragments)

» Can be coupled to Liquid Chromatography (LC-MS)

. SEMMELWEIS

EGYETEM 176

Analyte molecule Solvent Coulomb Naked charged
i i al;
Spraying nozzle evaporation fission . anl,yle
+®+
+ l +++ L l @ + +
Aoy T
N : + ¥ JUED
FF T@+
~
Chad'gedlpa'em T Charged progeny
roplet
Charged dropletat  droPlets

Taylor cone the Rayleigh limit

Department of Biophysics and Radiation Biology
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MS— lonization methods IIl.

Matrix Assisted Laser Desorption
lonization (MALDI)

» Sample is mixed with an energy-absorbing matrix / -
. . . 50\“0 ‘
» Laser pulse triggers sample and matrix ablation and Mixing sample matrix \}56‘ g

desorption
» Analyte molecules become ionized in the gas phase

[}
% é‘ @ . . ® ® ° ®
= r
» Advantages: accurate, fast, broad mass range, soft g o .+ v P € R .
C, [ e
.. . . . . = N © ® h
ionization, not just for volatile samples, sub-picomole B’ o @ , o & Molecularions
0? s e lonization ® .
sensitivity Desorption @ ¢ N

» Disadvantages: expensive instrumentation

* Most widely used with time-of-flight (TOF)

spectrometers

EGYETEM 176

E: ! SENH\'IFI W ]‘:[S Department of Biophysics and Radiation Biology

MS — Mass analyzers |.

Separation in magnetic field

U
» Electric field (with U accelerating voltage) accelerates M = | _
the ions (of q charge) and provide them with a kinetic S, S,
energyof: L [T s e
Exinetic=U-q = %m ~v? lon source /".
"ol
» Accelerated ions enter a magentic field (induction lines ’."
are perpendicular to the direction of velocity). Lorentz "l

force forces the ions to a circular path: Detector » o ’ .

m-v?
Feentipretal = r =q-v-B
Magnetic field
* Radius can be calculated from position of the ion beam r2-B?.q
. . m=—_——
on the detector. Mass of the ion of interest: 20

i ! SEI\'H\'IFI WEIS Department of Biophysics and Radiation Biology
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MS — Mass analyzers Il.

Quadropule mass analyzer

* 4 parallel, cylindrical rod

» Oscillating electric field is applied on the rods —
opposing rods are connecter electrically — quadropole ,
is formed _/"Q%

* lons travel through the rods ' “

* Only ions of a certain mass-to-charge ratio will reach
lon Source Quadrupole

the detector for a given ratio of voltages

» Other ions have unstable trajectories and will collide
with the rods.

» By varying the voltage a widw m/z range can be

scanned

Department of Biophysics and Radiation Biology
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on Detector

=) Resonanceion —-—-. Non-resonance

MS — Mass analyzers Ill.

Time-of-flight (TOF) mass analyzer

1
* m/zratio is measured by the time of arrival to the detector E=qU = Emv2
A. Measurement
+ Matrix-embedded Acceleration orift
analyte on I-f. :I: ';I"
microtiter plate target I
—1. ® [ L ] Gy
|
J
\Electrudes Detector

Laser desorption/ionization |

Time-of-flight
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100 — Image adapted from htlps:ﬂsd!)s.db.ais_t.gn.ip 31 . Histogram pIOt Of intensity VS. m/Z
) ) ) base
71 Mass spectrum of ethanol i:E"ak * m/z: mass-to-charge ratio
80| CH;—CH,—0-H [CH,0HI » z (charge number is used instead of
> C,HgO M, =46 g (charge)
] IC;H501* )
§ 50— 45 * Molecular ion peak + fragments
£ . :
v | molecular Fragmentation depends on the type
= ion
S 40+ [CH,CH,OHT* | peak of spectrometer
T - +
i [M] * Isotope peaks may appear
i . a6 .
[CoHy) + Spectral analysis — sample
20 2T [ Hy [C,H:0T i
| fcHy [CoHylr| 29 P composition
15 26| 2 | 30 42
| | L] mz—=> | 4
0 —r——+ N s s ey e =t LI Bt | *
10 15 20 25 30 35 40 45
http: htm
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