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Many atom systems, Boltzmann distribution 
 

In a system of thermal equilibrium (constant temperature) the total 
energy (E) is distributed in such a way that an average of ½ kT 
energy corresponds to each degree of freedom 
(equipartition theorem) 
 

energy is constantly being redistributed among all particles and 
degrees of freedom. 
 

we could specify only the distribution of energy, by determining 
the numbers of particles (n0, n1, n2, …) with energies (ε0, ε1, ε2, ...)  
A series of occupation numbers {n0, n1, n2, …} = {ni} define 
state of the system. 
 

in thermal equilibrium there is a series {ni} with the highest 
probability 
 

i
i

inE ε∑= ,  ∑=
i

inN
 

kTnn
0i

e0i

εε −
−

=  
 

Graphical representation of the 
Botzmann distribution at various 
temperatures (T3>T2>T1) 
 
 

Phenomena based on Boltzmann distribution 
 

a) The barometric formula 
 

It is generally known that atmospheric density decreases with 
altitude. The density of the gas is given by the number of 
molecules per unit volume (n=N/V). 
 

εpot = mgh  
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b) Thermal emission of metals (electrons emitted due to heat) 
 

delocalized electrons of common orbits in metals behave in many 
aspects like gases 
 

The higher the temperature of the metal, the more electrons can 
leave the metal. 
 

Their numbers are also determined by the Boltzmann distribution.  
 

c) Nernst equation 
 

voltage of U between points A and B  
 

εpot =qeU (qe is the elementary charge unit) 
 

In thermal equilibrium the occupation numbers are given by the 
Boltzmann distribution: 
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This rule is analogous to the Nernst equation. 
 

d) Equilibrium and rates of chemical reactions 
 

In equilibrium, the distribution of 
the two states is given by: 
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The ratio nA/nB = K is called the 
equilibrium constant. 
reaction requires a certain 
amount of activation energy, 
which depends on the size of the energy barrier (εC) 
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therefore for the reaction rates: 
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Arrhenius plot 
 

The energy difference of the states 
can be obtained from the slope of 
the line fitted to the measurement 
data: 
 
 

Ideal Gases 
 

The model of an ideal gas is thought of as a large number (N) of 
spherical particles with identical masses moving randomly, 
while colliding completely elastically with each other and the 
walls of the container. All other interactions, and the total 
volume of the molecules relative to the size of the container can 
be ignored 
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(The averaging is denoted by a bar – this has to be done after 
calculating squares.) 
These formulae can also be considered as one definition of 
temperature. In this model, the pressure of the gas originates in 
the collision of particles with the container. 
 

NkTpV =  
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Real Gases 
 

we have to take into account 

1. the intrinsic volumes of the molecules, and that the 
2. molecules (approaching the wall) before collision slightly 

slowed down by the attraction of others 
 

if the volume of a single molecule is denoted by b: p(V-Nb) = NkT 
 

Applying this correction we would get smaller pressure due to the 
attraction effect mentioned above. 
 

The negative correction depends on the attraction by other 
particles on a molecule approaching the wall, and the number of 
molecules hitting the wall per unit time. Both are proportional to 
the number of molecules per unit volume, n = N/V.  
 

Thus  
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where a is a constant specific for 
the substance, and indicative of 
the strength of intermolecular 
forces 

Van der Waals state equation 
for real gases: 
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Van der Waals isotherms (p(V) diagram; T1<T2<Tc<T4<T5).  
(Inside the dashed line both phases (liquid and vapor) are present.) 
 

In order to liquefy a gas, it must be cooled under the so-called 
critical temperature (Tc). 
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Solid State Materials 
 
Crystalline States 
most important property is large-scale periodic order 
(highest level of order) 
 
Ideal crystals are an infinite periodic spatial sequence of 
identical structural elements. The geometric properties and the 
symmetry of the crystal is defined by the lattice (the crystal 
structure is made by putting the right ‘building blocks’ into the 
lattice at each vertex). The lattice consists of basic units called 
elementary cells. 

 
Fig. I.28. Elementary cells of NaCl (a) and Si (b) crystals. 
 
Classification: 
atomic, ionic, metallic, molecular lattice 
 
crystalline order in reality usually only extends to microscopic 
scales: microcrystals, monocrystals 
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Crystals are anisotropic substances, i.e. they have 
distinguishable directions. This can manifest, for instance, in the 
fact that within the crystal, light propagates with different 
velocities in different directions. 
 
Energy Bands 
 
As soon as the atoms get closer to form a crystal, and the state 
functions of atomic electrons start to overlap, the Pauli principle 
comes into effect. The tendency of the system to avoid identical 
quantum states is realized through the ‘splitting up’ of the equal 
energies of interacting electrons into N close levels. 
As N is very large, the multitude of close split levels forms in 
practice a continuous energy band. 
 

 
 

The formation of energy bands in crystals. Due to the decrease of 
atomic distances (r), the atomic energy levels are split up, and 
energy bands will form (r0 denotes the equilibrium distance). 
 


