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“There are three types of lies -- lies, damn lies, and statistics.”

— Benjamin Disraeli

“Facts are stubborn things, but statistics are pliable.”

— Mark Twain

“If your experiment needs a statistician, you need a better

experiment.”
— Ernest Rutherford



When analyzing data, our goal is simple: we wish to make the
strongest possible conclusion from limited amounts of data.

To achieve this, we need to overcome two problems:

o Important findings can be obscured by biological variability and
experimental imprecision. This makes it difficult to distinguish real
differences from random variation.

o The human brain excels at finding patterns, even in random data. Our
natural inclination (especially with our own data) is to conclude that
differences are real and to minimize the contribution of random
variability. Statistical rigor prevents us from making this mistake.



How Scientist fool themselves

COGNITIVE FALLCIES IN RESEARCH

~ HYPOTHESIS TEXAS "ASYMMETRIC JUST-SO
MYOPIA SHARPSHOOTER ~ ATTENTION STORYTELLING
Collecting evidence =~ Seizingon = Rigorously Finding stories
to support a random patterns checking after the fact
hypothesis, not inthedataand  unexpected to rationalize
looking for evidence mistaking them  results, but ~whatever the
~ against it, and for interesting giving expected results turn
ignoring other findings. ones a free pass. | out to be.
explanations.

Nature Special Collection: Reproducibility



Ronald Fisher:

“To consult the statistician after an experiment is finished is

often merely to ask him to conduct a post mortem examination.

He can perhaps say what the experiment died of.”

For statistical analyses to be interpretable, it is essential that these three
statements be true:

e All analyses were planned.
e All planned analyses were conducted exactly as planned and then reported.

e All the analyses are taken into account when interpreting the results.



Data collection = data types

categoric numerical
ordinal nominal continuous discrete

|. Categoric

|/a. Nominal: Qualitative not sortable data, e.g. the blood groups: A, B, AB,
0.

|/b. Ordinal: Qualitative sortable data , e.g. the severity of the disease:
modest, medium, strong.

II. Numerical

lI/a. Discrete: Quantitative data which can have only certain values, e.g. the
number of children in a family.

lI/b. Continuous: Quantitative data which can have any value in a certain
interval, e.g. blood pressure, weight of people...




Data collection = measurement

During measurement the quantity to be measured should be
compared to a standard (measurement unit) = the results
of measurements are never precise!

As a consequence, the results of measurements (data) are
governed by the rules of chances = every piece of data is a

stochastic variable.

Data may contain systematic errors and for sure contains
random (stochastic) errors.

Systematic errors can be corrected - stochastic errors are

inherent to the measurements.




Data are stochastic variables

Given set of elements together with the numerical values of their properties
under study form a statistical manifold (distribution). Usually, we want to
determine this distribution of values in the set. To estimate the parameters
describing the distribution we have to do sampling of the distribution.

Sampling means random selection of a subset (“n” elements) of the
statistical distribution.

A measurement is always sampling!

In laboratory practice, the obtained value of a measurement is a
continuously distributed stochastic variable.

“n” independent measurements (parallels) result in “n” independent
stochastic variables with the same probability distribution.

The sampling is representative if every element of the distribution can be
selected by equal chance.



The outcome of the measurement is the expected
value of the distriution
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Random errors are almost always normally distributed!



“n” number of independent measurements result in

€

n~ independent stochastic variables with the same
probability distribution.

How many parallels do we have by measuring a sample "n"-times?



Population and sample
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Frequency Distribution, Histogram
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Data from life science experiments usually follow normal or
lognormal distribution. These distributions are completely
determined by the expected values and variances.
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f(x)
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What is the meaning of the distribution function?

f(x) f(x)
1. l 2. 3.

a b ab a b

The area under the distribution function in the (a, b)
interval is the probability that a randomly chosen
sample fells into this interval, if the area under the
full function is set to 1.

cumulative _
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distribution |
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Principal theorem in statistics: by increasing the
sample size, the experimental distribution function
(envelop of the histogram) will approximate the
envelop of theoretical distribution function.
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What is the meaning of the distribution function?

a(x) i 68.0 %

: 13.5 %
1 0,
i theoretical 132 of)’
: standard 2.509%
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Yellow areas: ~95% of data obtained by random sampling from a normal
distribution fell within £ 26 range around the expected value.

Consequently, data from a small sample very likely fell into this interval. It
is unlikely that we find outliers in a small sample!



Triplicates from a normal distribution
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Do not look for pattern!



Be suspicious of yourself - not of your data!

1.10

do not discard data!
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It is unlikely to find outliers among 3-5 data points!



What if data are from lognormal distribution?
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Check the distribution by applying logarithmic scaling...



Random sampling from a normal distribution
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In life science experiments, n tipically of 3-5 !!!



How to characterize the normal distribution?

we need the expected value and the standard deviation

The mean value is the unbiased estimate 1<
of the expected value of a distribution: <X >= _Ex,-
n
i=1

The unbiased estimate of the theoretical standard deviation is the square root
of the variance:

n
| » 1 2
Variance: § = —E(xl.— <Xx>)
n-14

The sample standard deviation: s=V(s?) (why n-17?)

Every estimates of the theoretical values are calculated from the sampling.

The sample values are statistical variables. Every quantity calculated from
statistical variables must also be statistical variable!



How to characterize the mean value?

_mean _data
distribution of the data of the groups (1.-8.) :
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How to characterize the mean value?

The standard error : SE =s/vn
(other common abbreviation is S.E.M. = standard error of mean)

The standard error is the sample standard deviation of the mean!!!

It describes the fluctuation of the mean value around the theoretical expected
value of the distribution (and not the dispersion of the data)!

The standard error decreases by increasing the sample size!

Remember: standard deviation decribes the dispersion of data, while standard
error is the fluctuation of the mean around the expected values.

Use standard error when displaying data means, unless it is important to show up
the dispersion of the original data!



Mean, standard deviation, standard error ~ n
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Activity

Graphing mean values with SD or SE
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Pooled data from “k” data sets

The mean value of k data sets does not depend on the order of averaging:

I, 1
<x>—;2<x> kz(njle)_in ;2)6

in1
The sample standard deviation from the set of k parallels of n; data points each:

k

E(n]. ~1)s’

2

s, = Vs, 2, where the combined variance is: s” = it

2 =1)

The standard error of the mean of k pooled data sets:  SE, =5, /V(Z n; - 1)



Propagation of errors

Sample standard deviation of the functions of x;, y=f(x;):

I, 9y 3y oIy
s _\/E(é’xS) \/(07)61 5 ) (=)

2

Consequence: the variances of all experimental errors are additive!

S=\/(S12 +55 455 +...)

The coefficient of variation is the relative error of the sample:
Cy = standard error/mean = s/<x>



Propagation of errors
background substraction and normalization:

1) when subtracting background, the sample standard deviation becomes:

2 2
Skorr = \/S +SO

2) calculate with the relative standard deviation, when normalizing data:

_ S _\/2 2
Sk Sp =Sk T Sk
<X >,




Confidence interval

What is the distance of the sample mean and the theoretical expected value?

| 9(x) .
population
distribution
(not known)
X
0 g
_ - - the estimated
the estimated S T T~ error limits
error limits %g ~ notinclude p,
include p, =h :
. = in 2 cases
in 38 out of 40 =
cases =y
Xt 25;‘/ “0
error limits

We chose a error level (let's say 5%).
If n is large, than (1-a)100% is the
probability that the expected mean
value is within the + 2SE interval of
the experimental mean value. We call
this as the 95% confidence interval.

2
X
1 5

The use of 95% confidence level is highly recommended!



Confidence interval for any value of "n"

If we set the error level a, than (1-a)100% is the probability
that the expected mean value is within the <x> *+ t_SE

interval, where t, is the Student’ s t-distribution value at o
and (n-1) degree of freedom.

The results of "n" parallel measurements should be given as

the mean t its confidence interval:
<x>*t,s/Vvn = <x>+tSE

Suggestion: set o always to 0.05 (5%)



How big is the confidence interval?

(1-00)100% confidence level and (n-1) degree of freedom:

<x> + t, xSE

f(t) A ~__ (standard
- oo normal
~ 4 distribution)

®
&,
SG

tsy tiy%

DF = (n-1) 95% 99%
| 12.71 63.66

2 4.30 9.93

3 3.18 5.84

4 2.78 4.60

9 2.26 3.25

o0 1.96 2.58

T T T T T T —= [
2 -1 0 1 2
Student's t-distribution



How to estimate the necessary number of parallels?

We denote the desired precisity by "h" (h = <x> - ), "s" is the
sample standard deviation, and a is the critical error:

n = (t,s/h)?

n=(t,s% / h%)>?

S

95%

n 99%

10%

10%

10%

5%

15

27

10%

1%

384

666

20%

10%

15

27

Rule of thumb at 95% confidence level:

n=4x(s%/h%)>2



Hypothesis testing

Null hypothesis or initial hypothesis (Hy) — we assume a statement is true for the
statistical manifold. We must also define an alternative hypothesis H; against H,.

If Hy is:
accepted rejected
H, is true right decision Type-| error
H, is false Type-Il error right decision

The lingo "null hypothesis" comes from the frequent situation that the expected
difference is zero (e.g. the sample mean and the expected mean values are the
same, there is no effect of a treatment, etc). The alternative hypothesis usually
opposing the null hypothesis.

The probability of Type-l error is a (the critical error level). The probability of
Type-ll error can not be given in general, it depends on “n” and the form of H,.



How a hypothesis testing works?

e We define H, and calculate the test-statistics value from our data and compare it
to the theoretical value at the maximal o error level (the probability of making a
type-I error) at the given degree of freedom. We always have to define H; against
H, as well.

e If H, is true, then the probability that the empirical value of the test statistics
exceeds the theoretical value is .

e If the relation “empirical (calculated) value” < “theoretical (critical) value” is
true, than we can say: our data do not contradict to H, at (1-a.)100% confidence
(or probability) level.

e Never say that a test statistics proves your assumption!!!

e Always define precisely H, és H, as pairs! For example, these two hypothesis-
pairs define different tests:

Ho: u1-p2=0 and Hy: p1-pu2>0 or Ho: u1-p2=0 and Hy: p1-p2#0



How a hypothesis testing works?

Ho: u1-p2=0 and Hy: p1-pu2>0 or Ho: u1-p2=0 and Hy: p1-p2#0

one-tailed test two-tailed test

regions of acceptance

JAPIVAN

regions of rejectlon

Unless there is a clear indication for a one-tailed test (e.g. testing the effect
of antipyretic or antihypertensive drugs, etc), always use the two-tailed test.



The most common statistical tests are:

e Comparing means - Student's t test / ANOVA
e Comparing variances - Fischer's F test
e Assumptions about a distribution

or comparing distributions - y? tests



Student’ st test

_<x>—MJE_<x>—M
S SE

If <x> =y, than t =0 | But the mean is a statistical variable, its

[

value fluctuates around u. For any o error level the critical
value of the t test (t ) are calculated (tabulated).

If |[t] <t we accept Hy at (1-01)100% confidence level.

Choosing the Hgy: <x>- u =0 and H;: <x> - u # 0 hypothesis
pair at 95% confidence level is highly recommended!



Comparing two groups — significant difference

<X>—-—<X>,

[ =
Sy
n1¢n2 n1=n2=n
— %2 _ %2 o) 2
5 - (n, =Ds, * +(n, = 1)s, (1 . 1) . s, ¥+,
n+n,-2 non, d n
DF=n;+n,-2 DF=2n-2

For the Hy: pu1-pu2 = 0 and Hy: pl-p2 # 0 hypothesis pair: If the empirical t value
in absolute term larger than the critical t-value ( | t | > t, ) than we say the
difference is significant at (1-a)100% confidence.

Again, it is important to emphasize that a statistical test never proves or
disproves our hypothesis, only contradict or do not contradict to it...



Comparing variances: Fischer's F-test

Just like anything else derived from experimental data, variance (or sample
standard deviation) is also a statistical variable. To test whether the difference in
two variances is due to sampling (random errors) - do a Fischer's F test:

Hy: 0;=0, or Hy: 6,/0, = 1  (with H, being the opposite statement)
The test statisticsis:  F=s;/s, (useindexing that s; >s,)

Compare the calculated F value to the critical ones given in F tables. If the
empirical F is smaller then the critical value in absolute term then we can say that
these two samples are from distributions of equal variances at (1-o)100%
confidence. This is true this way to normal distribution only. Note that the degree
of freedom for the nominator and denominator can be different (n;-1 and n,-1).



Assumptions of Student's t test

The basic assumption of Student's t test that data are obtained by sampling
normal distribution with equal variances. Usually, this requirement holds
because of the experimental design. This assumption can be tested by F test.

In case the variances are different (e.g. treatment changes the distribution,
or variance changes from preparation to preparation, etc), but the samples
are from normal distribution, the Welch-corrected t test can be used.

If the distribution of samples are not known, or data are not sampled from
normal distribution, than we must choose the non-parametric version of the
t test = the Mann-Whitney test. This test compare ranks only and does not
assume normal distribution (i.e. any distribution) for the samples.



Varieties of Student's t test

unpaired groups paired groups
A TNF-a B G-CSF A
2 - ATX 5 ATX
C * * * -
6_
* = 10000 £ c ® c 4t ®
9l ; 9 Q
o o
a o Q.
3 1000 T (@) D 5l
y E Y E 4f E
E 6} 2 - =
s =) NS = =
(_OJ) 100? T -8 . -8 2 [~
- - ®
oLl b 3
T 10 -g E Y
o T f 2 1t
0 _ﬁ:—"—: 1
ONO - + - o+ ONO - + -+ 0 0
Sham Cancer Sham Cancer G-CSF - + TNF-a - -

If data are paired (the sample is measured, then treated, then measured again),
than do a regular unpaired t test for the differences (or ratios) with Hy: <Ax> = 0.



p value

More likely observation

Y
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P-value
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Very un-likely
observations
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Observed

data point\
-

Set of possible results

Probability density

A p-value (shaded green area) is the probability of an observed
(or more extreme) result assuming that the null hypothesis is true.



Never rely only on p-value...

The irony is that when UK statistician Ronald Fisher introduced the P value in the
1920s, he did not mean it to be a definitive test. He intended it simply as an
informal way to judge whether evidence was significant in the old-fashioned
sense: worthy of a second look. The idea was to run an experiment, then see if the
results were consistent with what random chance might produce. Researchers
would first set up a 'null hypothesis' that they wanted to disprove, such as there
being no correlation or no difference between two groups. Next, they would play
the devil's advocate and, assuming that this null hypothesis was in fact true,
calculate the chances of getting results at least as extreme as what was actually
observed. This probability was the P value. The smaller it was, suggested Fisher,
the greater the likelihood that the straw-man null hypothesis was false.

The P value was never meant to be used the way it is used today!



statistical power

What is the percentage of cases when a test leads to the acceptance
of true null hypothesis - it depend on a, "n", and on the effect size

a Impact of sample size on power b Impact of effect size on power
Zi? Power
= 0.53

n=7 “l 0.84 '
A 12345678910

8 10 12 14 n 8 10 12 14
Average expression Average expression

effect size, d = (uy-us)/ o



A popular mistake: “more” significant

120

100

——
—

80

60

Effect

40

20

*%

——

Control Treated

Treated2

Significance is like homology: either exist or does
not exist at a certain error level. Do not attempt to
guantify the significance of the differences with a
statistical test parameters, like the p value. Choose
o for type-l error (e.g. oo = 0.05) and either
calculate the empirical t value and compare it to
its critial value, or display the p value but make
statistical deceison only by comparing p to o !

In a set of experiment is unlikely that parts of it
have different statistical power!

* p<0.05 = significant, **=p<0.01 = more significant — NEVER say so

If we use a = 0.05 error level, which is highly recommended in biology, then p=0.04
or p=0.002 have the same meaning, the difference can be significant at 95%

confidence level.



v test

XZ - glz + E"ZZ + 0 + EmZ

To check that our data are from a normal distribution, or are from the
same (normal) distribution.

In regression analysis y? test can be used to estimate the goodness of fit
- If the regression model we fitted to the data is correct then the
residuals should follow a normal distribution with zero expected value:

Xz = i (Ayl)z
i=1



Examplel: Is there any outlier in this data set?

80 A A A A A A A A A
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80
704
60
50
40—:

30

20

It looks very likely by eye! What to do to decide?



Use the Gauss’ g-statistics: Denote the suspicious point
by X,, calculate <x> and s from the rest of the data.
Then:

g:
A

If calculated g-value exceeds the critical value in the
table, the x, probably is an outlier...

50.791
44.672

48.050

73.504 73.504 — 45.014
59.496 g=

27.462 8.869
38.133
49.142

46.7

10.1

6.51

5.31

4.73

4.40

OO |IN OO |[W|S

4.18

-
(=

4.04

=321

43.052 |t is probably NOT an outlier, though it looked so!

44.323




Example2: two sets of 10 samples, one received placebo,
the other received treatment

Value

Student’s t test (unpaired, two-tailed, ot=0.05)

757 o ®.e
70- ® Control Treated
Mean 47 .86 60.11
65+ Std. Deviation| 12.29  12.36
60 ° d
PY Mean + SEM of column A | 47.86 + 3.887 N=10
597 oo Mean + SEM of column B | 60.11 + 3.908 N=10
50- .’ Difference between meang -12.24 + 5.512
—— 95% confidence interval | -23.83 to -0.6637
45+ o o
® o
404 o ¢ P value 0.0394
35- P value summary *
Are means signif. different? (P < 0.09) Yes
30- One- or two-tailed P value? Two-tailed
05 ® t, df t=2.221 df=18
Control Treated




Table Analyzed TTEST.TXT
Column A Contral
Vs VS
Column B Treated
Unpaired t test

F value 0.0334

P value summary *

Are means signif. different? (P <0.05) |Yes

COne- or two-tailed P value? Two-tailed

t, df t=2.221 d=18

How big is the difference?

Mean £ SEM of column A

47.86 £ 3.887 N=10

Mean £ SEM of column B

60.11 £3.308 N=10

Difference between means

-12.24 £5512

95% confidence interval

-23.83 to -0.6637

R squared

0.2152

F test to compare variances

F.DFn, Dfd 1.011,9,3
F value 0.9874

P value summary ns

Are variances significantly different? Mo

Graphpad Prism



What if the same sets of data were obtained from a paired experiment:

Value

Student’s t test (paired, two-tailed, a=0.05)

757 ° L
70- ° Control Treated
Mean 47.86 60.11
65- Std. Deviation| 12.29 12.36
60- ° d
° How big is the difference”
557 o0 Mean of differences -12.24
504 o’ 95% confidence interval| -25.04 to 0.5498
— R squared 0.3424
454 ° °® °
40- . ° P value 0.0586
35- P value summary ns
Are means signif. different? (P < 0.09) No
30+ One- or two-tailed P value? Two-tailed
® t, df t=2.165 df=9
25
Control Treated




Value

Value

What if the data are obtained from real paired sets:

90
80- ° Control Treated
o Mean 47.86 58.09
704 [ Std. Deviation| 12.29 12.63
- )
60 ¢ —:"— How big is the difference?
504 _go® °.° Mean of differences -10.23
00 95% confidence interval| -11.50 to -8.962
40+ ° ° R squared 0.9737
304 °
P value P<0.0001
204 P value summary b
Are means signif. different? (P < 0.09) Yes
10+ One- or two-tailed P value? Two-tailed
0 t, df t=18.27 df=9
Control Treated
90-
80- * Control Treated
. Mean 47.86  58.09
70- [ Std. Deviation| 12.29 12.63
i )
807 e —=2y— [ Wean = SEM of column A | 47.86 £ 3.887 N=10
50- 2.° 0.‘ M_ean + SEM of column B | 58.09 + 3.995 N=10
00 Difference between meang -10.23 £ 5.574
40+ ° ° 95% confidence interval | -21.94 to 1.483
30+
¢ P value 0.0831
20- P value summary ns
Are means signif. different? (P < 0.04) No
10+ One- or two-tailed P value? Two-tailed
0 t, df t=1.835 df=18
Control Treated

paired t test

unpaired t test



Example 3: triplicates of placebo and treated, compare one-by-one

29.5- °

29.04 Control _Treated

28.5- Mean 23.77  27.86

28.0+ < Std. Deviation| 1.557  1.542

27.5-

g;g: Mean + SEM of column A | 23.77 + 0.8989 N=3
Qo i Mean + SEM of column B | 27.86 + 0.8904 N=3
%26'0' Difference between meang -4.095 + 1.265
>§:-g' o 95% confidence interval | -7.607 to -0.5824

.

24.5- - .

24.04 ° P value 0.0318 )

23'5_ P value summary *

23'0_ Are means signif. different? (P < 0.09) Y&&=~

22'5_ One- or two-tailed P value? Two-tailed

22.0 Py t, df t=3.236 df=4

Control Treated

28.51 °

28.01 Control Treated

27.54 Mean 23.40 27.05

27.04 —_— Std. Deviation| 1.896 1.308

26.5-

26.0- Mean + SEM of column A | 23.40 + 1.095 N=3
5.5 ° b Mean £ SEM of column B | 27.05 + 0.7554 N=3
% ’ Difference between meang -3.651 £ 1.330
>25.01 95% confidence interval | -7.344 to 0.04109

24.5-

24.01 P value

23.54 P value summary ns

23.04 Are means signif. different? (P < §04) No

4 One- or two-tailed P value?
22.5 i t, df t=2.745 df=4
22.0 : =2.745 df=
Control Treated

294 .
Control Treated
284 v Mean 22.35 28.14
o Std. Deviation| 0.2971 0.5411
271
Mean £ SEM of column A | 22.35 + 0.1715 N=3]
o 261 Mean + SEM of column B | 28.14 + 0.3124 N=3
% Difference between meang -5.795 + 0.3564
> 25 95% confidence interval | -6.785 to -4.806
244 P value P<0.0001
P value summary o
234 Are means signif. different? (P < 0.09) Yes
) One- or two-tailed P value? Two-tailed
22 _°__ t, df t=16.26 df=4
Control Treated
28.25+
28.00- L4 Control Treated
27.754 Mean 25.35 27.22
27.50- ° Std. Deviation| 0.2657 0.9982
27.254
27.00- Mean + SEM of column A | 25.35 + 0.1534 N=3
%6 75- Mean £ SEM of column B | 27.22 + 0.5763 N=3]
=" Difference between meang -1.870 + 0.5964
96'50' 95% confidence interval -3.526 to -0.2145
26.254
°
26.00+ P value [0.0066=
25.754 P value summary *
25.504 . Are means signif. different? (P < §09) Yes
25.25 One- or two-tailed P value? Twe=teited
25.00 P t, df t=3.136 df=4
Control Treated

Muliple comparisons increase the prevalence of type-I error!



Let's pool the data for placebo and treated:

t = (27.569-23.716)/V((1.3451/2+1.5445/2)) = 2.667

Degree of freedom =24-8-2 =14

t(crit) = 2.15(95%) |t| > t(crit) = the difference is significant



70

60

50

40

30

Potencial biomarkers — diagnhostic value !?

p = 0,00052 - significant difference
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Multiple independent H, (comparisons)

p valédi értéke > 0.05

Number of probabilty of p<0.05 | critical “p” for a = 0.05
independent H,

1 5% 0.0500
2 10% 0.0253

3 14% 0.0170
4 19% 0.0127

5 23% 0.0102

6 26% 0.0085

7 30% 0.0073

8 34% 0.0064

9 37% 0.0057
10 40% 0.0051
20 64% 0.0026
50 92% 0.0010
100 99% 0.0005
n 100(1-0.95") 1-0.95"n




ANOVA = Analysis of variance

For multiple comparisons regular t test is not proper, because the occurrence of type-I| error
accmulates = we would reject the true null hypothesis too frequently.

ANOVA is a generalization of t test for multiple comparisons. It compares mean values but
utilizing variances of different groupings. The variance of the whole set of data is examined
to see that is is solely due to random sampling (statistical fluctuations) or partly caused by
real differences among means...
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ANOVA = Analysis of variance

Basic idea: if all the samples were from the same distribution, than their grand-average
would be the same irrespective of the sequence of calculation.
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Let's compare the variances:
— for the whole data set;
— for the individual groups (within groups);
— for the means values (among groups).



ANOVA = Analysis of variance

Y
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variance sum of squares DF variances F test

k
Among SS, =En.(< X; >—<x>)

J
j=1

k nk
Within 85, =YY (x-<x;>)

j=1 =1

k nk
Whole SSt=EE (x,—<x;>)’

j=1 I=1

k-1 Sk2=SSk/k‘1 F=Sk2/5b2

N'k Sb2=SSb/(N'k)

N-1



ANOVA - which group is different?

If F=s.2/s,2>F. W reject H,, there is at least one different group W

How to figure it out without the multiple comparisons? - post hoc tests!

— Dunnett's test: one group is the control and compare all the others to this by
Student's t test W k-1 comparisons only, instead of k(k-1)/2

— Tukey's test: corrected Student's t-test: (<x;> - <x,>) / SE (<x;> > <x,>)
(k*(k-1)/2 comparisons)

— Bonferroni's test: correct the valueof ai: o' =a/ n (n comparisos)



"Effect size" - how to quantitate the effect

- correlation type measures:

Pearson corelation coefficient = R SS = sum of squares
determination coefficient = R2 DF = degree of freedom
n? =SS,/ SS, (overestimates the effect) M5 = mean square

SD = standard deviation
®? = (SS. -DF . *MS,) / (SS; + MS,)

- difference type measure:

Cohen: d = <x;> - <x,> / sd

Z'=1-3*(SD, +SD,) / (<x>, - <x>)
("p" is a positive control, "n"is a negative control)
if Z'=1 V pefect assay
if0,5<7'<1 7 great assay
if 0<Z' <0,5 7 poor assay
if 2'<0 WV useless assay



Final remark...

Herbert George Wells, writer:

Statistical thinking will one day be as necessary for efficient
citizenship as the ability to read and write.

(he was great in science fiction ©)




