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When analyzing data, our goal is simple: we wish to make the
strongest possible conclusion from limited amounts of data.

To achieve this, we need to overcome two problems:

o Important findings can be obscured by biological variability and
experimental imprecision. This makes it difficult to distinguish real
differences from random variation.

o The human brain excels at finding patterns, even in random data. Our
natural inclination (especially with our own data) is to conclude that
differences are real and to minimize the contribution of random
variability. Statistical rigor prevents us frommaking this mistake.



How Scientist fool themselves

Nature Special Collection:  Reproducibility



Ronald Fisher:

“To consult the statistician after an experiment is finished is 
often merely to ask him to conduct a post mortem examination.

He can perhaps say what the experiment died of.” 

For statistical analyses to be interpretable, it is essential that these three 
statements be true:

• All analyses were planned.

• All planned analyses were conducted exactly as planned and then reported.

• All the analyses are taken into account when interpreting the results.



Data collection = data types

I. Categoric
I/a. Nominal: Qualitative not sortable data, e.g. the blood groups: A, B, AB,
0.
I/b. Ordinal: Qualitative sortable data , e.g. the severity of the disease:
modest, medium, strong.

II. Numerical
II/a. Discrete: Quantitative data which can have only certain values, e.g. the
number of children in a family.
II/b. Continuous: Quantitative data which can have any value in a certain
interval, e.g. blood pressure, weight of people...
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DATA COLLECTION AND MAIN TYPES OF DATA 
 
As mentioned earlier, data collection is motivated by a goal. There are data that are 
used only to identify and distinguish certain things. Larger number of data is 
collected in a hope that following data analysis a previously formulated question 
can be answered. The way of collecting data or accessing data is called 
“experiment” in general. Some data are already known, we just need to ask 
someone about it. Other data need to be measured somehow. In this regard the 
investigation of a natural phenomenon or casting a dice are both experiments. The 
data (the result of the experiment) can be of several different types. Qualitative 
data can be sorted into categories (categorical data). Quantitative data are 
characterized by a number (numerical data). Qualitative data are, for example, the 
names of the diseases, types of pathogens, or the severity of the condition. The size 
of the rash or the duration of the sickness can be expressed by a number (and a 
unit), therefore these are numerical (quantitative) data. There are two kinds of 
qualitative (categorical) data depending whether they can be sorted naturally in 
some order. An example of ordinal (sortable) data is, for example, the severity of 
the disease: modest, medium, strong. Nominal (not sortable) data are for example 
the blood groups: A, B, AB, 0.  There are two sub-groups within the numerical 
data as well: continuous and discrete. If the result of the measurement can have any 
value within a certain interval, it is called continuous (e.g., weight, height, blood 
pressure). Other data can only have discrete values (e.g., number of children in the 
family). The above types of data are summarized in table 1. We have to mention 
that continuous data are only theoretically continuous. In practice we always work 
with discrete numbers (otherwise one would need to use an infinite number of 
decimal digits). 
 
ORGANIZING DATA, FREQUENCY AND GRAPHIC 
REPRESENTATION 
 
In everyday life we often deal with a large number of data that are connected to a 
given problem. We need to organize and summarize our observations so that we 
obtain an overview of the data. 
 

 
INFECTION 

 
DISEASE 

 

Absolute 
frequency 

 

Relative  
frequency 

 
 

bacterial 

Salmonellosis (Food 
poisoning by Salmonella) 

 
94 

 
 

208 

 
0.280 

 
 

0.619 Scarlatina (Scarlet fever) 102 0.304 
Other bacterial 12 0.036 

 
 

viral 

Hepatitis infectiosa 
(Hepatitis) 

 
22 

 
 
 

126 

 
0.065 

 
 
 

0.375 
Mononucleosis infectiosa 
(Mono) 

22 0.065 

Lyssa (Rabies) 74 0.220 
Other viral 8 0.0238 

other Other infections 2 2 0.006 0.006 
        total: 336 336 1.000 1.000 

 
Table 2. A summary table of infections. 

 
Table 2 summarizes the infections reported to occur in Budapest in October, 2000. 
Numbers in the first column of the table (94, 102, and so on) are occurrences of 
individual infectious diseases (Salmonellosis, Scarlatina, etc.) during the given 
time period. These numbers are called absolute frequencies. In the next column, 
subtotals (208, 126, 2) of the first column are calculated that correspond to larger 
groups of bacterial, viral or other types of infections. These are also absolute 
frequencies. 
 
From the absolute frequencies the relative frequencies can be calculated. The 
relative frequency equals the absolute frequency of the category divided by the 
total number of cases (336). Relative frequencies are always numbers between 0 
and 1 and are listed in the next column of the table. If percentage is preferred, 
multiply these relative frequencies by 100. Thus, relative frequency is a ratio, as 

 
 

Table 1. Classification of data. 
  

 
 
Fig. 1a. Bar graph. Absolute frequencies 
of infections as a function of categories. 

  

 absolute frequency 
 absolute HäuFig.keit 
 abszolút gyakoriság 

  
 relative frequency 
 relative HäuFig.keit 
 relatív gyakoriság 

  



Data collection = measurement

• During measurement the quantity to be measured should be
compared to a standard (measurement unit) Þ the results
of measurements are never precise!

• As a consequence, the results of measurements (data) are
governed by the rules of chances = every piece of data is a
stochastic variable.

• Data may contain systematic errors and for sure contains
random (stochastic) errors.

• Systematic errors can be corrected - stochastic errors are
inherent to the measurements.



Data are stochastic variables

• Given set of elements together with the numerical values of their properties
under study form a statistical manifold (distribution). Usually, we want to
determine this distribution of values in the set. To estimate the parameters
describing the distribution we have to do sampling of the distribution.

• Sampling means random selection of a subset (“n” elements) of the
statistical distribution.

• A measurement is always sampling!
• In laboratory practice, the obtained value of a measurement is a

continuously distributed stochastic variable.
• “n” independent measurements (parallels) result in “n” independent

stochastic variables with the same probability distribution.
• The sampling is representative if every element of the distribution can be

selected by equal chance.



The outcome of the measurement is the expected 
value of the distriution
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the “real” value

the expected value

systematic error

random errors

Random errors are almost always normally distributed!



“n” number of independent measurements result in

“n” independent stochastic variables with the same 
probability distribution.

How many parallels do we have by measuring a sample "n"-times?



Population and sample
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the pulse rate is 1/minute. We will work only with the number values in the 
following, but note that all the final results should have units, too. There are many 
questions which could be answered by this measurement.  
 
Such questions are: 

1. WHAT IS THE VALUE of pulse rate of medical student Doris Diligent? 
2. WHAT IS THE normal VALUE of the pulse rate? 
3. DOES the pulse rate CHANGE after holding breath for one minute? 
4. IS THERE A DIFFERENCE between the pulse rate of girls and boys?  
5. Etc., etc. 
 

Let us examine the questions one by one. Without knowing any statistics one 
would think that answering the first question is very easy. We just need to measure 
the pulse number of Doris, and we will have a result and that’s it. However, if 
one has heard about statistics already, then skepticism wakes up and instead of a 
definite answer even further questions will be asked. Such questions are: is this the 
right answer for sure? Did I make any mistake during the measurement? If the 
investigator knows that "chance" factors also influence the experiment, then an 
“accurate” measurement cannot be performed no matter how hard it is attempted. 
Hence a decision is made to perform the measurement again and again. 
 
When performing a measurement several times, it is always assumed that the same 
thing is measured again, and the same result is expected. In other words, the 
pulse rate of Doris is expected not change in the long run in any direction, and 
the results might differ only due to random variations. We can say that the result 
have two parts: the main one is the deterministic (constant) and the subsidiary one 
is the stochastic (random). Naturally, these two parts can not be separated directly. 
 
Multiple measurements can be regarded as if there was a set of all possible 
observations, called the population (fundamental ensemble), and during every 
measurement we choose an element of this set. In our example the set has an 
infinite number of elements, but this is not a necessary condition. An element of 
this set in general is called the variable, and x is its usual symbol. The variable 
may attain different values. The value of the variable is given by the particular 
measurement. 
 
A single measurement is not sufficient to answer the other questions either. In the 
case of the second question we assume that there is a fundamental deterministic 
normal pulse rate, and the pulse rate of the individuals is randomly scattered 
around that value. In this case we can imagine the population as a large but finite 
number (say, the total number of people in a country, N = 1 245 782, Fig. 3.) of 
individuals with their known pulse rates in that moment. These individuals together 
with their pulse rates will form the population. Thus, in this case the population has 
a finite number of elements. 
 
In the first case the measurement was repeated on the same person (many times), 
and in the second case the pulse rate was measured (once) on a large number of 
people. The variable is very similar in both cases, but the population is different. 
The third and fourth questions will be discussed later. 
 
Although the questions ask something about the population, in most cases we do 
not and cannot know the whole population. Therefore, we choose a sample from 
the population that contains a total N elements. Sampling means choosing n 
elements, ideally randomly, from the population. Sampling happens, for 
example, when we measure several times. Sampling makes sense only if n can be 
much smaller than N (see Fig. 3). 

 
DISTRIBUTION OF THE SAMPLE, FREQUENCY 
DISTRIBUTION, HISTOGRAM 
 
These concepts will be introduced through an example. Let us choose the second 
question from the list (WHAT IS the normal value of the pulse rate?) and measure 
the pulse rate of the students of a group. The student group together with the pulse 
rate data can be considered as a sample (n = 20) taken from the population related 
to the question (see Fig. 3). The collected data (xi, where i = 1, 2, 3, 4, 5,…,20) are 
listed in the Table 4 below. 

 sample 
 Stichprobe 
 minta 

  

 frequency distribution 
 HäuFig.keitsverteilung 
 gyakorisági eloszlás 

  
 histogram 
 Histogramm 
 hisztogram 

  

 variable 
 Variable 
 változó 

  

 
 

Fig. 3. Illustration of population, 
variable (pulse rate, the values of 

which are indicated on the chest of the 
figures) and sample. 

pulse rate of people



Frequency Distribution, Histogram
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the pulse rate is 1/minute. We will work only with the number values in the 
following, but note that all the final results should have units, too. There are many 
questions which could be answered by this measurement.  
 
Such questions are: 

1. WHAT IS THE VALUE of pulse rate of medical student Doris Diligent? 
2. WHAT IS THE normal VALUE of the pulse rate? 
3. DOES the pulse rate CHANGE after holding breath for one minute? 
4. IS THERE A DIFFERENCE between the pulse rate of girls and boys?  
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Let us examine the questions one by one. Without knowing any statistics one 
would think that answering the first question is very easy. We just need to measure 
the pulse number of Doris, and we will have a result and that’s it. However, if 
one has heard about statistics already, then skepticism wakes up and instead of a 
definite answer even further questions will be asked. Such questions are: is this the 
right answer for sure? Did I make any mistake during the measurement? If the 
investigator knows that "chance" factors also influence the experiment, then an 
“accurate” measurement cannot be performed no matter how hard it is attempted. 
Hence a decision is made to perform the measurement again and again. 
 
When performing a measurement several times, it is always assumed that the same 
thing is measured again, and the same result is expected. In other words, the 
pulse rate of Doris is expected not change in the long run in any direction, and 
the results might differ only due to random variations. We can say that the result 
have two parts: the main one is the deterministic (constant) and the subsidiary one 
is the stochastic (random). Naturally, these two parts can not be separated directly. 
 
Multiple measurements can be regarded as if there was a set of all possible 
observations, called the population (fundamental ensemble), and during every 
measurement we choose an element of this set. In our example the set has an 
infinite number of elements, but this is not a necessary condition. An element of 
this set in general is called the variable, and x is its usual symbol. The variable 
may attain different values. The value of the variable is given by the particular 
measurement. 
 
A single measurement is not sufficient to answer the other questions either. In the 
case of the second question we assume that there is a fundamental deterministic 
normal pulse rate, and the pulse rate of the individuals is randomly scattered 
around that value. In this case we can imagine the population as a large but finite 
number (say, the total number of people in a country, N = 1 245 782, Fig. 3.) of 
individuals with their known pulse rates in that moment. These individuals together 
with their pulse rates will form the population. Thus, in this case the population has 
a finite number of elements. 
 
In the first case the measurement was repeated on the same person (many times), 
and in the second case the pulse rate was measured (once) on a large number of 
people. The variable is very similar in both cases, but the population is different. 
The third and fourth questions will be discussed later. 
 
Although the questions ask something about the population, in most cases we do 
not and cannot know the whole population. Therefore, we choose a sample from 
the population that contains a total N elements. Sampling means choosing n 
elements, ideally randomly, from the population. Sampling happens, for 
example, when we measure several times. Sampling makes sense only if n can be 
much smaller than N (see Fig. 3). 

 
DISTRIBUTION OF THE SAMPLE, FREQUENCY 
DISTRIBUTION, HISTOGRAM 
 
These concepts will be introduced through an example. Let us choose the second 
question from the list (WHAT IS the normal value of the pulse rate?) and measure 
the pulse rate of the students of a group. The student group together with the pulse 
rate data can be considered as a sample (n = 20) taken from the population related 
to the question (see Fig. 3). The collected data (xi, where i = 1, 2, 3, 4, 5,…,20) are 
listed in the Table 4 below. 

 sample 
 Stichprobe 
 minta 

  

 frequency distribution 
 HäuFig.keitsverteilung 
 gyakorisági eloszlás 

  
 histogram 
 Histogramm 
 hisztogram 

  

 variable 
 Variable 
 változó 

  

 
 

Fig. 3. Illustration of population, 
variable (pulse rate, the values of 

which are indicated on the chest of the 
figures) and sample. 
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Table 4. Pulse rate values of the student group (example). 
Such a table may look much better than a simple list of numbers.  In order to make 
sense out of the values and grasp their meaning, we have to organize them. If we 
plot our data on a coordinate line, the variation around a “normal” value becomes 
apparent. 

 

 
Fig. 4. Pulse rate data plotted on a coordinate line. 

 
Albeit arbitrary, three regions may be distinguished: I. many datapoints, II. few 
datapoints, III. no datapoints at all. 
 
A reefinement of this picture leads to the concept of the frequency distribution 
that we get by grouping the data into classes. Let us make intervals of the same 
width (classes) through the axis and count the data (frequency) falling in these 
classes. The relative frequency distribution can be calculated as well. The intervals 
need not be of the same width, but this way it is easier to handle them. 
 
Because the given set of individual data can be grouped in more than one way, 
many different frequency distributions can be constructed from the same dataset. 
Table 5 represents one of them. 

 
Table 5. One possible frequency distribution of the sample. 

 
The frequencies and relative frequencies can be represented graphically in a bar 
diagram (bar graph). The graph consists of a series of rectangles, each with an 
area proportional to the frequency of data in the corresponding class interval 
represented on the horizontal axis. The method can be used with uneven class 
distribution as well. This graphic representation of data is called the histogram. 
Equal class widths are convenient, because in this case the frequency if 
proportional to the height of the rectangle. 
 
Fig. 5 shows several different histograms constructed from the same pulse rate 
data. Class widths are equal in the first two histograms, but the class limits differ; 
in the last two cases the class widths were changed as well. There are no strict rules 
for constructing histograms, although some esthetic guidelines may apply (see 
Comment 1). 
 
As we can see in Fig. 5, classes of the variable are represented along the horizontal 
axis of the histogram and the absolute and relative frequencies along the vertical 
axis. Every small rectangle (or square) corresponds to one measured value, thus the 
total number of rectangle units equals the total number of measurements (n = 20). 
This is the total area under the frequency curve. The total area under the relative 
frequency curve is always 1, or 100 % (because of the division with the total 
number of measurements n). 
Although the shapes of the four histograms (Fig. 5) are rather different, which 
depends on their construction, some regularity can be seen. We can observe that all 

66 56 89 63 66 69 71 68 58 69 
78 66 64 84 74 76 69 77 74 76 

CLASS LIMITS  FREQUENCY RELATIVE FREQUENCY 
55 d xi < 60 2 0.10 
60 d xi  < 65 2 0.10 
65 d xi < 70 7 0.35 
70 d xi < 75 3 0.15 
75 d xi < 80 4 0.20 
80 d xi < 85 1 0.05 
85 d xi < 90 1 0.05 

total: n = 20 1.00 

Comment 1: 
The appearance of the histogram is "esthetic" 
if it is neither sporadic (contains no gaps), nor 
jam-packed into one or two classes (it has a 
structure).  

If we want to 
construct the 
"optimal" histogram 
into a quadrangle 
area, then the 
number of classes 
(intervals) should 
roughly be equal to 
the maximum 
number of elements 
in one  

interval, both denoted by m. Then one 
element occupies a quadrangle area (instead a 
rectangle). According to the figure, the 
optimal number of the classes is:  

nm 2 . 
The optimal size of the classes ('xopt) can be 
obtained by dividing the difference of the 
maximum (xmax) and minimum (xmin) of the 
data by the optimal number of classes:  

m
xx

x minmax
opt

�
 ' . 

 The first two histograms of Fig. 5 were 
constructed in accordance with these  
principles. 

  
 

Fig. 5. Several possible histograms of 
the sample. The first was made based on 
Table 5. Every rectangle represents one 

observation. 
  

  

pulse rates of a sample
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Frequency Distribution➜

Probability Distribution

Medical biophysics practices                                              BIOSTATISTICS a.   9 

of them have a "hill" roughly in the middle and around the same value, and their 
"width" is very similar. If the data size is increased and at the same time the class 
width decreased (there is no limit to continue the process), then the rough steps of 
the envelope observed imitially gradually smooth into a continuous curve (Fig. 6.). 
 
DISTRIBUTION OF THE POPULATION, THEORETICAL 
DISTRIBUTION CURVE 
 
Let us have a closer look at the tendency shown in Fig. 6. If the population consists 
of a finite number of elements (N ), then upon increasing the number of the sample 
elements (n) the sample size will eventually reach the polulation size, hence the 
sample will contain all the elements of the population (n = N ). Thus, the 
distribution of a sample with N elements yields the distribution of the 
population. The only uncertainty arises from the arbitrary choice of the class 
limits. For populations containing an infinite number of elements we can only say 
that upon increasing the sample size the sample distribution approaches better and 
better that of the population. In this case the population is described by a 
theoretical distribution. 
 
The population distribution determines all the properties of the variable. It 
provides the probabilities of all the possible values of the variable (nothing more 
can be said about the variable). Let us have an interval (a, b) on the coordinate 
axis. The probability that a randomly chosen value falls within the interval (a, b) 
equals the area that lies under the distribution curve in this interval (from a to b). If 
in the interval (a, b) the distribution curve has small values, the area under the 
curve is small, and the corresponding probability of incidence of these values of 
the variable will be low (Fig. 7/1). However, if in the interval (a, b) the distribution 
curve has large values, the area and the corresponding probability will be high 
(Fig. 7/2). If the width of the interval is increased, the area under the curve 
increases too, which means higher probability of incidence for these values (Fig. 
7/3). Similarly to the histograms, the total area under the curve equals 1, because 
the "interval" (a, b) which in this case spans from – ∞ to + ∞ contains any 
randomly chosen value for sure. (See earlier remark about the inaccuracy and 
usefulness of a statement) 
 

 
Fig. 7. Meaning of the area under the distribution curve (see text). 

 
It is important to note that we always speak about an interval, because there is no 
area above a single value (the width of such an "area" would be zero). 
Consequently, in case of continuous variables probability that a randomly chosen 
value exactly matches a given number is zero. This technically means that all the 
measured data are different. In practice, however every measured number means 
an interval as we always use numbers with finite decimal places. The last digit is 
always rounded. (See earlier: continuous and discrete character of data). 
 
The theoretical distribution describes all the possible data (i.e., the population), 
whereas the histogram concerns only the elements of a sample taken from the 
population (i.e., the data of the specific measurement). 
 
PRINCIPAL THEOREM OF STATISTICS 
 
Let us recall how we obtained the theoretical distribution: the number of elements 
in the sample, thus the number of measured data was increased. The principal 
theorem of mathematical statistics is that in case of large samples, the empirical 
distribution function (i.e., the envelope of the histogram) approximates very 
well the theoretical distribution function. Consequently, one may hope that the 
more frequently data occur within a certain interval in the sample, the more 
probable is the appearance of these values in the population as well. 

 
 

Fig. 6. Increasing the data size and 
decreasing the class width gradually 

smoothes the envelope of the histogram. 



Data from life science experiments usually follow normal or
lognormal distribution. These distributions are completely
determined by the expected values and variances.



What is the meaning of the distribution function?
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The theoretical distribution describes all the possible data (i.e., the population), 
whereas the histogram concerns only the elements of a sample taken from the 
population (i.e., the data of the specific measurement). 
 
PRINCIPAL THEOREM OF STATISTICS 
 
Let us recall how we obtained the theoretical distribution: the number of elements 
in the sample, thus the number of measured data was increased. The principal 
theorem of mathematical statistics is that in case of large samples, the empirical 
distribution function (i.e., the envelope of the histogram) approximates very 
well the theoretical distribution function. Consequently, one may hope that the 
more frequently data occur within a certain interval in the sample, the more 
probable is the appearance of these values in the population as well. 
 
A characteristic parameter of a population is determined by mathematical statistics 
through the examination of only a certain number (preferably few) of its elements. 
Sampling means choosing the elements to be examined (the sample) in a way that 
enables us later to draw reliable conclusions (inferences) about the whole 
population. This is usually achieved by random selection of sample elements 
(See Comment 2). Notably, the problems and aspects are particularly relevant in 
medicine.  

 
 

Fig. 6. Increasing the data size and 
decreasing the class width gradually 

smoothes the envelope of the histogram. 

Comment 1: 
The appearance of the histogram is "esthetic" 
if it is neither sporadic (contains no gaps), nor 
jam-packed into one or two classes (it has a 
structure).  

If we want to 
construct the 
"optimal" histogram 
into a quadrangle 
area, then the 
number of classes 
(intervals) should 
roughly be equal to 
the maximum 
number of elements 
in one  

interval, both denoted by m. Then one 
element occupies a quadrangle area (instead a 
rectangle). According to the figure, the 
optimal number of the classes is:  

nm 2= . 
The optimal size of the classes (∆xopt) can be 
obtained by dividing the difference of the 
maximum (xmax) and minimum (xmin) of the 
data by the optimal number of classes:  

m
xxx minmax

opt
−

=∆ . 

 The first two histograms of Fig. 5 were 
constructed in accordance with these  
principles. 
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DISTRIBUTION OF THE POPULATION, THEORETICAL 
DISTRIBUTION CURVE 
 
Let us have a closer look at the tendency shown in Fig. 6. If the population consists 
of a finite number of elements (N ), then upon increasing the number of the sample 
elements (n) the sample size will eventually reach the polulation size, hence the 
sample will contain all the elements of the population (n = N ). Thus, the 
distribution of a sample with N elements yields the distribution of the 
population. The only uncertainty arises from the arbitrary choice of the class 
limits. For populations containing an infinite number of elements we can only say 
that upon increasing the sample size the sample distribution approaches better and 
better that of the population. In this case the population is described by a 
theoretical distribution. 
 
The population distribution determines all the properties of the variable. It 
provides the probabilities of all the possible values of the variable (nothing more 
can be said about the variable). Let us have an interval (a, b) on the coordinate 
axis. The probability that a randomly chosen value falls within the interval (a, b) 
equals the area that lies under the distribution curve in this interval (from a to b). If 
in the interval (a, b) the distribution curve has small values, the area under the 
curve is small, and the corresponding probability of incidence of these values of 
the variable will be low (Fig. 7/1). However, if in the interval (a, b) the distribution 
curve has large values, the area and the corresponding probability will be high 
(Fig. 7/2). If the width of the interval is increased, the area under the curve 
increases too, which means higher probability of incidence for these values (Fig. 
7/3). Similarly to the histograms, the total area under the curve equals 1, because 
the "interval" (a, b) which in this case spans from – ∞ to + ∞ contains any 
randomly chosen value for sure. 
 

 
Fig. 7. Meaning of the area under the distribution curve (see text). 

 
It is important to note that we always speak about an interval, because there is no 
area above a single value (the width of such an "area" would be zero). 
Consequently, in case of continuous variables probability that a randomly chosen 
value exactly matches a given number is zero. This technically means that all the 
measured data are different. In practice, however every measured number means 
an interval as we always use numbers with finite decimal places. The last digit is 
always rounded. (See earlier: continuous and discrete character of data). 
The theoretical distribution describes all the possible data (i.e., the population), 
whereas the histogram concerns only the elements of a sample taken from the 
population (i.e., the data of the specific measurement). 
 
PRINCIPAL THEOREM OF STATISTICS 
 
Let us recall how we obtained the theoretical distribution: the number of elements 
in the sample, thus the number of measured data was increased. The principal 
theorem of mathematical statistics is that in case of large samples, the empirical 
distribution function (i.e., the envelope of the histogram) approximates very 
well the theoretical distribution function. Consequently, one may hope that the 
more frequently data occur within a certain interval in the sample, the more 
probable is the appearance of these values in the population as well. 
 
A characteristic parameter of a population is determined by mathematical statistics 
through the examination of only a certain number (preferably few) of its elements. 
Sampling means choosing the elements to be examined (the sample) in a way that 
enables us later to draw reliable conclusions (inferences) about the whole 
population. This is usually achieved by random selection of sample elements 
(See Comment 2). Notably, the problems and aspects are particularly relevant in 
medicine.  

 
 

Fig. 6. Increasing the data size and 
decreasing the class width gradually 

smoothes the envelope of the histogram. 

Comment 1: 
The appearance of the histogram is "esthetic" 
if it is neither sporadic (contains no gaps), nor 
jam-packed into one or two classes (it has a 
structure).  

If we want to 
construct the 
"optimal" histogram 
into a quadrangle 
area, then the 
number of classes 
(intervals) should 
roughly be equal to 
the maximum 
number of elements 
in one  

interval, both denoted by m. Then one 
element occupies a quadrangle area (instead a 
rectangle). According to the figure, the 
optimal number of the classes is:  

nm 2= . 
The optimal size of the classes (∆xopt) can be 
obtained by dividing the difference of the 
maximum (xmax) and minimum (xmin) of the 
data by the optimal number of classes:  

m
xxx minmax

opt
−

=∆ . 

 The first two histograms of Fig. 5 were 
constructed in accordance with these  
principles. 

  

The area under the distribution function in the (a, b)
interval is the probability that a randomly chosen
sample fells into this interval, if the area under the
full function is set to 1.

Principal theorem in statistics: by increasing the
sample size, the experimental distribution function
(envelop of the histogram) will approximate the
envelop of theoretical distribution function.

cumulative 
(probability) 
distribution



What is the meaning of the distribution function?

Medical biophysics practices                                               STATISTICS a.   10 

 
NORMAL OR GAUSSIAN DISTRIBUTION 
 
Depending on the examined variable, the theoretical distribution may have 
different shapes. However, in most of the cases it is a symmetric bell-shaped 
curve with one peak (we shall give the reason for this later on), which is called 
normal or Gaussian distribution. This type of distribution is illustrated in Fig. 6. 
and Fig. 7. The mathematical expression of the Gaussian distribution function is: 
 

2

2

2
)(

22

1)( σ
µ

πσ

−
−

=
x

exg .                                      (1) 

 
Th expression may seem somewhat complicated, but in fact it is a modification of 

the 
2

)( xexf −= function, decorated with some parameters. The normal or Gaussian 
distribution is not a single distribution function. Due to its parameters it describes a 
whole family of them: the shape of the curves is similar, but their position, width 
and height may vary (see Fig. 8). 
 

 
 

Fig. 8. Some Gaussian distributions with different position (µ ) and width (σ ). 
 
Starting in the centre of the curve and working outward the height of the curve 
descends gradually at first, then faster and finally slower again, resulting in a bell-
shaped curves with tails spanning to the infinity. Although the curve descends at 
the extremes toward the horizontal axis, it never actually touches it, no matter how 
far out one goes. The total area under the curve is 1 by definition (see earlier: 
theoretical distribution). 
 

 
 

Fig. 9. The bell-shaped Gaussian distribution and its parameters. 
 
The constants µµµµ and σσσσ in the previous formula are the parameters of the 
distribution. These parameters specify one curve from the infinite number of 
possibilities. The parameter µµµµ is the so-called expected value that gives the 
position of the maximum of the curve on the x axis. The parameter σσσσ is the 

  
  

Carl Friedrich Gauss (1777-1855), 
German matematician. 

Comment 2. 
The sample has to be representative with 
respect to the population. It is a fundamental 
requirement that the distribution of the 
investigated parameter, apart from random 
sampling variations, has to be the same as 
that in the whole population. We have to keep 
this in mind when designing experiments. 
When we organize a survey about the 
occurrence of thyroid problems, for example, 
we have to collect data from every region of 
the country, taking into consideration the 
density of the population. Over-
representation of certain regions may lead us 
to incorrect conclusions. As an example, 
iodine-deficient tap water leads to much 
higher occurrence of the symptomes of 
hypothyroidism in the northern counties of 
Hungary than in the southern ones. 

 normal distribution,  
        Gaussian distribution 

 Normalverteilung, Gauss Verteilung 
 normális eloszlás, Gauss-eloszlás 

  

 theoretical standard deviation, SD 
 theoretische Streuung 
 elméleti szórás 

  

 expected value 
 Erwartungswert 
 várható érték 

  

Yellow areas: ~95% of data obtained by random sampling from a normal
distribution fell within ± 2s range around the expected value.

Consequently, data from a small sample very likely fell into this interval. It 
is unlikely that we find outliers in a small sample!



0.90

0.95

1.00

1.05

1.10

Triplicates from a normal distribution

Do not look for pattern!



0.90

0.95

1.00

1.05

1.10

It is unlikely to find outliers among 3-5 data points! 

do not discard data!

Be suspicious of yourself - not of your data!



What if data are from lognormal distribution?

Check the distribution by applying logarithmic scaling…



Random sampling from a normal distribution

In life science experiments, n tipically of 3-5 !!!

n =

20

50

100

500



How to characterize the normal distribution?
we need the expected value and the standard deviation

The mean value is the unbiased estimate
of the expected value of a distribution:

The unbiased estimate of the theoretical standard deviation is the square root
of the variance:

Variance:

The sample standard deviation: s= √(s2) (why n-1?)

Every estimates of the theoretical values are calculated from the sampling.
The sample values are statistical variables. Every quantity calculated from
statistical variables must also be statistical variable!

s2 = 1
n−1

(xi− < x >)
2

i=1

n

∑

< x >= 1
n

xi
i=1

n

∑



How to characterize the mean value?
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The empirical standard deviation s is the measure of variability of the data. It 
gives the average deviation of the data from the mean. Similarly to the Gaussian 
distribution (Fig. 9), 68 % of the elements of the sample are within the interval 
( sx ± ), 95 % are within the interval ( sx 2± ), and more than 99 % are within the 
interval ( sx 3± ). 
 
The interval ( skx ⋅± ) calculated from a large number of data (n ≈ 1000) contains 
exactly 95 % of the elements of the sample (k ≈ 2) and it is called reference range 
or normal range. This is used mostly in the field of laboratory diagnostics. (In 
certain medical applications the interpretation of normal range can be different.) 
For 95 % of the healthy people the diagnostic parameter will fall in the normal 
range and for 5 % will be outside of it (see Comment 5). 
 
In this case the distortion is not a problem, because if the entire dataset is 
systematically shifted, the reference range is shifted accordingly. One can 
sometimes observe this when comparing results from different diagnostic 
laboratories. Reference ranges can be slightly different for the same variable, 
because the applied protocols and apparatuses are not the same. 
 
 
CONFIDENCE INTERVAL, ACCURACY AND RANDOM 
ERROR OF THE ESTIMATED PARAMETER 
 
Let us emphasize once again that the error of the estimated parameter can be 
distortion as well, which is usually not possible to determine. Because of this, from 
now on the error will imply inaccuracy only, or random error. As stated before, if 
the number of the elements increases, the mean approaches the expected value 
more and more (see formula (7)), but we still do not know the answer to the 
question of how much the mean deviates from the expected value characteristic for 
the population in case of a sample of n elements. In other words, what is the error 
of the mean? 
 

 
 

Fig. 10. Random sampling distribution of means: pulse rate data and 
corresponding mean of eight groups (samples of 20 students). Note that the means 

of different groups "spread" much less than the data themselves. 
 
As discussed previously, the mean as a central parameter is not sensitive to the 
changes of the sample because all the elements of the sample are involved in the 
calculation, and, especially in larger samples, a single element plays a minor role in 
altering it. Thus, the sample means calculated from randomly selected samples (of 
the same population) are not very different. In other words, the sample means 
"spread" much less around the expected value than the data (Fig. 10.).  
 

Comment 5. 
"the diagnostic value is in the normal range" 

Let’s make this clear 
with an example. The 
probability of throwing 
6 on a dice is 1/6, 
which is around 17 %. 
Hence the probability 
of not 

 throwing 6 is 5/6, which makes (5/ 6 ≈ 0.83) 
approximately 83 %. 

If instead of the regular 
dice we use an 
icosahedron (a regular 
solid shape having 20 
faces) with numbered 
faces, the probability 
of throwing 20 is 
1/20 = 0.05 = 5 %.  

The probability of not throwing 20 is 
19 / 20 = 0.95 = 95 %.  
Now, we can imagine the strength of the 
statement: "the diagnostic value is in the 
normal range", as it is of equivalent certainty 
to not throwing 20 by an icosahedron. 

 standard error 
 Standardfehler  
 standard hiba 

  

spreading of mean (standard error):



How to characterize the mean value?

The standard error : SE = s/√n
(other common abbreviation is S.E.M. = standard error of mean)

The standard error is the sample standard deviation of the mean!!!
It describes the fluctuation of the mean value around the theoretical expected
value of the distribution (and not the dispersion of the data)!

The standard error decreases by increasing the sample size!

Remember: standard deviation decribes the dispersion of data, while standard
error is the fluctuation of the mean around the expected values.

Use standard error when displaying data means, unless it is important to show up
the dispersion of the original data!



Mean, standard deviation, standard error ~ n



Graphing mean values with SD or SE
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Pooled data from “k” data sets

The mean value of k data sets does not depend on the order of averaging:

The sample standard deviation from the set of k parallels of nj data points each:

sk = √sk
2 , where the combined variance is:

The standard error of the mean of k pooled data sets:       SEk = sk /√(S nj - 1)

€ 
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Propagation of errors

Consequence:  the variances of all experimental errors are additive!

Sample standard deviation of the functions of xi, y=f(xi):

s2 = (∂y
∂xi

∑ si )
2 = ( ∂y

∂x1
s1)

2 + ( ∂y
∂x2

s2 )
2 +...

s = (s1
2 + s2

2 + s3
2 +...)

The coefficient of variation is the relative error of the sample:
CV =  standard error/mean  =  s/<x>



Propagation of errors

1) when subtracting background, the sample standard deviation becomes: 

2) calculate with the relative standard deviation, when normalizing data:

background substraction and normalization:

skorr = s2 + s0
2

sR =
s

< x >0
⇒ sR = sR

2 + sRo
2



Confidence interval
What is the distance of the sample mean and the theoretical expected value?

The use of 95% confidence level is highly recommended!
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This ''spread" is expressed as the standard error (standard deviation of the 
sampling distribution of means): 

n
ssx = .                                                   (8) 

 
The final result is usually given in the form of: 
 

xskx ⋅± .                                                     (9) 

 
The result is always an interval, a limiting value in negative and positive 
directions enclosing the expected value from both sides. The problem is how to 
set the value of k. Where are these boundaries? This is ambiguous. The wider the 
range (k is large), the more likely that it includes the expected value, and our 
conclusion is probably right (see earlier: statistical inference). However, a wide 
range is rather useless in the everyday practice. The narrower the range, the higher 
the chance that the expected value is outside the chosen range, and the certainty of 
our conclusion becomes lower. Thus, increasing the estimation certainty and 
lowering the chance of a mistaken conclusion requires a wide range.  By contrast, a 
narrow range is required for making professionally relevant interpretations. 
 
Methods of statistics enable us to declare the extent of accuracy. Accordingly, we 
calculate a range of values about which we are reasonably confident (certain) that 
contains the "true" parameters. The interval is referred to as the confidence 
interval, its limits are called confidence limits, and the degree of confidence is the 
confidence level.  
 
Even though the value of k depends on the number of elements of the sample 
(degree of freedom), for large sample we can say, that if k = 1, the confidence level 
is around 0.68, if k = 2, is approximately 0.95 and for k = 3 it is greater than 0.99 
(see table 6). 
 

Confidence level 
(approximately) 

68% 95% 99% 

Confidence interval 
xsx ±  xsx 2±  xsx 3±  

  error limit sure error limit 
 

Table 6. Confidence levels and the corresponding confidence intervals. 
 
Having learned all these we may answer the "WHAT IS THE VALUE of ...?" type 
questions (or present the final result of a measurement) according to formula (9) in 
the form of a confidence interval (see Comment 6, Fig. 11). 
 
It is straightforward from definition (8) that the error decreases with increasing the 
number of data: 

if  ∞→n ,          0→xs ,                                         (10)  

It is visible that measuring many times has a good reason. For a fixed confidence 
level we can achieve the narrowing of the confidence interval beyond any limit just 
by increasing the number of data (see Comment 6). 

Comment 6. 
From the pulse rate data we have already 
calculated the mean (71 (1/minute)) and the 
empirical standard deviation (8 (1/minute)). 
The standard error is  

2
20
8

≈==
n
ssx  (1/min); 

and the error limit is (at 95 % confidence 
level) 

xsx 2± =71 ± 4 (1/min). 
(rounded). 
 
The result of the measurement can be stated 
as follows: "based on our experimental data 
we can say with 95 % confidence that the 
expected value of the pulse rate of the 
examined population is in the 67-75 
(1/minute) range" (Fig. 11). 
In order to have the expected value in the 
chosen range with greater certainty or 
accuracy, the number of data has to be 
increased. 
How many is enough? 
There is no a general rule, but for this 
situation we can say some considerations. 
Since the pulse rate is given rounded as an 
integer value, increasing the accuracy beyond 
±1 (1/minute) does not make much sense. 
The question of certainty is ambiguous, but 
99 % certainty or more is rarely needed. 
According to this, if we choose the error 
limit, then n must be increased until the error 
decreases to the value where the 13 ≤xs  
condition is satisfied. 
 

 confidence level 
 Konfidenzniveau 
 konfidencia szint 

  

 confidence interval 
 Konfidenzintervall 
 konfidencia intervallum 

  

 
 
Fig. 11. Error limit, calculated from the 
sample contains the expected value of 
the population with 95 % certainty. 

We chose a error level (let's say 5%).
If n is large, than (1-a)100% is the
probability that the expected mean
value is within the ± 2SE interval of
the experimental mean value. We call
this as the 95% confidence interval.



Confidence interval for any value of "n"

If we set the error level a, than (1-a)100% is the probability
that the expected mean value is within the <x> ± taSE
interval, where ta is the Student’s t-distribution value at a
and (n-1) degree of freedom.

The results of "n" parallel measurements should be given as
the mean ± its confidence interval:

<x> ± tas/√n = <x> ± taSE

Suggestion: set a always to 0.05 (5%)



How big is the confidence interval?

DF = (n-1) 95% 99%

1 12.71 63.66

2 4.30 9.93

3 3.18 5.84

4 2.78 4.60

9 2.26 3.25

∞ 1.96 2.58

(1-a)100% confidence level and (n-1) degree of freedom:
<x> ± ta ´ SE

t5% t1%
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Distributions of several statistical characteristics can be converted by specific 
transformations into the Student's t distribution. Change, deviation, difference 
and correlation of variables are always measured by a parameter. This parameter 
is estimated by a statistical property of the sample, and its standardized form 
always yields a ts value. 
 
The calculated ts value should be zero in principle if there is no change, no 
deviation, no difference or no correlation. This is the reason why the “no” 
answer to the original yes/no question is called the null hypothesis. The null 
hypothesis has a unique role in hypothesis testing. Irrespective of the statement to 
be confirmed by the study, during the test the validity of the null hypothesis is 
always assumed. In the end this statement is either accepted or rejected, and the 
answer to the initial question is negative or positive, respectively. 
 
It is easy to find the reason for the above logic. In case of a positive answer to the 
initial question, the number of possible answers can be infinitely large, but only a 
single value of the parameter, the zero corresponds to the negative answer. Fixing 
the parameter makes the distribution of the calculated statistical parameter 
unambiguous, thus one possible distribution (the Student's t-distribution) 
corresponds to the null hypothesis, and many distributions to the opposite 
statement. However, we should emphasize, that the calculated ts value can be zero 
only theoretically. In reality, after performing all the calculations we usually get a 
nonzero ts value. We have to make our decisions based on the relationship of the ts 
value and the Student's t distribution asumed by the hypothesis. 
 
We would have an easy job in decision making if the Student's t distribution 
spanned only a given range, let's say from tbegin to tend. It would be enough to check 
whether the ts value is in that interval or not. Inside the interval the null hypothesis 
would   be  accepted,  and outside  it  would  be  rejected.   However,   the   
Student's   t-distribution, just like the Gaussian distribution, spans from –∞ to +∞, 
therefore a finite range that enables us to make an unambiguous decision does not 
exist. 
 

  
 

Fig. 22. Regions of acceptance and rejection in case of a two-tailed t-test. 
 

Because we must define an interval in order to make a decision, let us cut off the 
"tails" of the Student's t distribution at values far from 0, starting at a critical value 
tcrit. (Exactly how we do this will be discussed later.) We may then pose the 
question whether the calculated ts value is within or outside this interval (see 
Figs. 22 and 23). If it falls within the interval (e.g. ts1), then the null hypothesis 
is accepted. If it is beyond the boundaries (e.g. ts2), then the null hypothesis is 
rejected, and we say that the calculated value of ts is significantly different from 
0, or shortly just: it is significant (see Comment 11). The part that was cut off is 
called region of rejection and the remaining interval is the region of acceptance. 
 
Regardless of what was our decision, acceptance or rejection of the null 
hypothesis, there is always a chance that our decision is not right. 

  
  
Fig. 21. The Student's t-distribution for 

three different degrees of freedom. 
 

Comment 11. 
The term "significant difference" never means 
absolute certainty, just as the term "not 
significant" does not mean that there is 
positively no difference. There may be real but 
very small differences, which are smaller than 
the error of the measurement, the experimental 
method or the equipment in use. Importantly, 
the significance analysis can never reveal the 
reason of the difference. 

Student's t-distribution



How to estimate the necessary number of parallels?

We denote the desired precisity by "h" (h = <x> - µ), "s" is the
sample standard deviation, and a is the critical error:

n = (tas/h)2 or    n = (tas% / h%)2

Rule of thumb at 95% confidence level: n ≈ 4 x (s% / h%)2

s h 95%   n 99%

10% 10% 4 7

10% 5% 15 27

10% 1% 384 666

20% 10% 15 27



Hypothesis testing
Null hypothesis or initial hypothesis (H0) – we assume a statement is true for the
statistical manifold. We must also define an alternative hypothesis H1 against H0.

If H0 is:

accepted rejected

H0 is true right decision Type-I error

H0 is false Type-II error right decision

The lingo "null hypothesis" comes from the frequent situation that the expected
difference is zero (e.g. the sample mean and the expected mean values are the
same, there is no effect of a treatment, etc). The alternative hypothesis usually
opposing the null hypothesis.

The probability of Type-I error is a (the critical error level). The probability of
Type-II error can not be given in general, it depends on “n” and the form of H1.



How a hypothesis testing works?

• We define H0 and calculate the test-statistics value from our data and compare it
to the theoretical value at the maximal a error level (the probability of making a
type-I error) at the given degree of freedom. We always have to define H1 against
H0 as well.

• If H0 is true, then the probability that the empirical value of the test statistics
exceeds the theoretical value is a.

• If the relation “empirical (calculated) value” < “theoretical (critical) value” is
true, than we can say: our data do not contradict to H0 at (1-a)100% confidence
(or probability) level.

• Never say that a test statistics proves your assumption!!!

• Always define precisely H0 és H1 as pairs! For example, these two hypothesis-
pairs define different tests:

H0: µ1-µ2=0 and H1: µ1-µ2>0 or H0: µ1-µ2=0 and H1: µ1-µ2≠0



How a hypothesis testing works?
H0: µ1-µ2=0 and H1: µ1-µ2>0 or H0: µ1-µ2=0 and H1: µ1-µ2≠0

one-tailed test two-tailed test

elfogadási tartomány

elutasítási tartományregions of rejection

regions of acceptance

Unless there is a clear indication for a one-tailed test (e.g. testing the effect
of antipyretic or antihypertensive drugs, etc), always use the two-tailed test.



The most common statistical tests are:

• Comparing means  - Student's t test / ANOVA

• Comparing variances  - Fischer's F test

• Assumptions about a distribution

or comparing distributions - c2 tests



Student’s t test

If <x> = µ, than t = 0 ! But the mean is a statistical variable, its
value fluctuates around µ. For any a error level the critical
value of the t test (tacrit) are calculated (tabulated).

If |t| ≤ tacrit, we accept H0 at (1-a)100% confidence level.

Choosing the H0: <x> - µ = 0 and H1: <x> - µ ≠ 0 hypothesis
pair at 95% confidence level is highly recommended!

t = < x > −µ
s

n = < x > −µ
SE



Comparing two groups – significant difference

DF = n1 + n2 - 2 DF = 2n - 2

For the H0: µ1-µ2 = 0 and H1: µ1-µ2 ≠ 0 hypothesis pair: If the empirical t value
in absolute term larger than the critical t-value ( | t | > ta ) than we say the
difference is significant at (1-a)100% confidence.

Again, it is important to emphasize that a statistical test never proves or
disproves our hypothesis, only contradict or do not contradict to it…

€ 

t =
< x >1 − < x >2

sd

€ 

sd =
(n1 −1)s1 *

2 +(n2 −1)s2 *
2

n1 + n2 − 2
( 1
n1

+
1
n2
)

€ 

sd =
s1 *

2 +s2 *
2

n

n1 ≠ n2                                                                                                              n1 = n2 = n



Comparing variances: Fischer's F-test

Just like anything else derived from experimental data, variance (or sample
standard deviation) is also a statistical variable. To test whether the difference in
two variances is due to sampling (random errors) - do a Fischer's F test:

H0: s1 = s2 or H0: s1/s2 = 1 (with H1 being the opposite statement)

The test statistics is: F = s1/s2 (use indexing that s1 > s2)

Compare the calculated F value to the critical ones given in F tables. If the
empirical F is smaller then the critical value in absolute term then we can say that
these two samples are from distributions of equal variances at (1-a)100%
confidence. This is true this way to normal distribution only. Note that the degree
of freedom for the nominator and denominator can be different (n1-1 and n2-1).



Assumptions of Student's t test

The basic assumption of Student's t test that data are obtained by sampling
normal distribution with equal variances. Usually, this requirement holds
because of the experimental design. This assumption can be tested by F test.

In case the variances are different (e.g. treatment changes the distribution,
or variance changes from preparation to preparation, etc), but the samples
are from normal distribution, the Welch-corrected t test can be used.

If the distribution of samples are not known, or data are not sampled from
normal distribution, than we must choose the non-parametric version of the
t test = the Mann-Whitney test. This test compare ranks only and does not
assume normal distribution (i.e. any distribution) for the samples.



Varieties of Student's t test
unpaired groups paired groups

If data are paired (the sample is measured, then treated, then measured again),
than do a regular unpaired t test for the differences (or ratios) with H0: <∆x> = 0.



p value



Never rely only on p-value…
The irony is that when UK statistician Ronald Fisher introduced the P value in the
1920s, he did not mean it to be a definitive test. He intended it simply as an
informal way to judge whether evidence was significant in the old-fashioned
sense: worthy of a second look. The idea was to run an experiment, then see if the
results were consistent with what random chance might produce. Researchers
would first set up a 'null hypothesis' that they wanted to disprove, such as there
being no correlation or no difference between two groups. Next, they would play
the devil's advocate and, assuming that this null hypothesis was in fact true,
calculate the chances of getting results at least as extreme as what was actually
observed. This probability was the P value. The smaller it was, suggested Fisher,
the greater the likelihood that the straw-man null hypothesis was false.

The P value was never meant to be used the way it is used today!



statistical power

What is the percentage of cases when a test leads to the acceptance 
of true null hypothesis - it depend on a,  "n", and on the effect size

effect size, d = (µ0 - µA )/ s



A popular mistake: “more” significant

Significance is like homology: either exist or does
not exist at a certain error level. Do not attempt to
quantify the significance of the differences with a
statistical test parameters, like the p value. Choose
a for type-I error (e.g. a = 0.05) and either
calculate the empirical t value and compare it to
its critial value, or display the p value but make
statistical deceison only by comparing p to a !

In a set of experiment is unlikely that parts of it
have different statistical power!

* p<0.05 = significant, **=p<0.01 = more significant – NEVER say so

If we use a = 0.05 error level, which is highly recommended in biology, then p=0.04
or p=0.002 have the same meaning, the difference can be significant at 95%
confidence level.
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c2 test

c2 = x1
2 + x2

2 + ··· + xn
2

To check that our data are from a normal distribution, or are from the
same (normal) distribution.

In regression analysis c2 test can be used to estimate the goodness of fit
- If the regression model we fitted to the data is correct then the
residuals should follow a normal distribution with zero expected value:

€ 

χ 2 = (Δyi)
2

i=1

n

∑
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Example1: Is there any outlier in this data set?
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+ SE
+2 SE
+3 SE

- SE
-2 SE
-3 SE

It looks very likely by eye! What to do to decide?

?



n g
3 46.7
4 10.1
5 6.51
6 5.31
7 4.73
8 4.40
9 4.18
10 4.04

Use the Gauss’ g-statistics: Denote the suspicious point
by x0, calculate <x> and s from the rest of the data.
Then:

If calculated g-value exceeds the critical value in the
table, the x0 probably is an outlier…

g =
x0− < x >

s

50.791
44.672
48.050
73.504
59.496
27.462
38.133
49.142
43.052
44.323

€ 

g =
73.504 − 45.014

8.869
= 3.21

It is probably NOT an outlier, though it looked so!



Control Treated
25

30

35

40

45

50

55

60

65

70

75

  Mean ± SEM of column A
  Mean ± SEM of column B
  Difference between means
  95% confidence interval

47.86 ± 3.887 N=10
60.11 ± 3.908 N=10
-12.24 ± 5.512
-23.83 to -0.6637

  P value
  P value summary
  Are means signif. different? (P < 0.05)
  One- or two-tailed P value?
  t, df

0.0394
*
Yes
Two-tailed
t=2.221 df=18

 
Mean
Std. Deviation

Control
47.86
12.29

Treated
60.11
12.36

Example2: two sets of 10 samples, one received placebo, 
the other received treatment

Student’s t test (unpaired, two-tailed, a=0.05)



Graphpad Prism



What if the same sets of data were obtained from a paired experiment:

Student’s t-teszt (párosított, kétoldali, a=0.05)

Control Treated
25

30

35

40

45

50

55

60

65

70

75

How big is the difference?
  Mean of differences
  95% confidence interval
  R squared

-12.24
-25.04 to 0.5498
0.3424

  P value
  P value summary
  Are means signif. different? (P < 0.05)
  One- or two-tailed P value?
  t, df

0.0586
ns
No
Two-tailed
t=2.165 df=9

 
Mean
Std. Deviation

Control
47.86
12.29

Treated
60.11
12.36

Student’s t test (paired, two-tailed, a=0.05)



What if the data are obtained from real paired sets:

Control Treated
0

10

20

30

40

50

60

70

80

90

How big is the difference?
  Mean of differences
  95% confidence interval
  R squared

-10.23
-11.50 to -8.962
0.9737

  P value
  P value summary
  Are means signif. different? (P < 0.05)
  One- or two-tailed P value?
  t, df

P<0.0001
***
Yes
Two-tailed
t=18.27 df=9

 
Mean
Std. Deviation

Control
47.86
12.29

Treated
58.09
12.63

Control Treated
0

10

20

30

40

50

60

70

80

90

  Mean ± SEM of column A
  Mean ± SEM of column B
  Difference between means
  95% confidence interval

47.86 ± 3.887 N=10
58.09 ± 3.995 N=10
-10.23 ± 5.574
-21.94 to 1.483

  P value
  P value summary
  Are means signif. different? (P < 0.05)
  One- or two-tailed P value?
  t, df

0.0831
ns
No
Two-tailed
t=1.835 df=18

 
Mean
Std. Deviation

Control
47.86
12.29

Treated
58.09
12.63

paired t test

unpaired t test



Control Treated
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5

  Mean ± SEM of column A
  Mean ± SEM of column B
  Difference between means
  95% confidence interval

23.77 ± 0.8989 N=3
27.86 ± 0.8904 N=3
-4.095 ± 1.265
-7.607 to -0.5824

  P value
  P value summary
  Are means signif. different? (P < 0.05)
  One- or two-tailed P value?
  t, df

0.0318
*
Yes
Two-tailed
t=3.236 df=4

 
Mean
Std. Deviation

Control
23.77
1.557

Treated
27.86
1.542

Control Treated
22

23

24

25

26

27

28

29

  Mean ± SEM of column A
  Mean ± SEM of column B
  Difference between means
  95% confidence interval

22.35 ± 0.1715 N=3
28.14 ± 0.3124 N=3
-5.795 ± 0.3564
-6.785 to -4.806

  P value
  P value summary
  Are means signif. different? (P < 0.05)
  One- or two-tailed P value?
  t, df

P<0.0001
***
Yes
Two-tailed
t=16.26 df=4

 
Mean
Std. Deviation

Control
22.35
0.2971

Treated
28.14
0.5411

Control Treated
25.00
25.25
25.50
25.75
26.00
26.25
26.50
26.75
27.00
27.25
27.50
27.75
28.00
28.25

  Mean ± SEM of column A
  Mean ± SEM of column B
  Difference between means
  95% confidence interval

25.35 ± 0.1534 N=3
27.22 ± 0.5763 N=3
-1.870 ± 0.5964
-3.526 to -0.2145

  P value
  P value summary
  Are means signif. different? (P < 0.05)
  One- or two-tailed P value?
  t, df

0.0350
*
Yes
Two-tailed
t=3.136 df=4

 
Mean
Std. Deviation

Control
25.35
0.2657

Treated
27.22
0.9982

Control Treated
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5

  Mean ± SEM of column A
  Mean ± SEM of column B
  Difference between means
  95% confidence interval

23.40 ± 1.095 N=3
27.05 ± 0.7554 N=3
-3.651 ± 1.330
-7.344 to 0.04109

  P value
  P value summary
  Are means signif. different? (P < 0.05)
  One- or two-tailed P value?
  t, df

0.0516
ns
No
Two-tailed
t=2.745 df=4

 
Mean
Std. Deviation

Control
23.40
1.896

Treated
27.05
1.308

Example 3: triplicates of placebo and treated, compare one-by-one 

Muliple comparisons increase the prevalence of type-I error!



Let's pool the data for placebo and treated:

€ 

s*
k
2 =

(n j −1)s*
2

j=1

k

∑

(n j −1)
j=1

k

∑

€ 

sd =
s1 *

2 +s2 *
2

n

€ 

t =
< x >1 − < x >2

sd

t = (27.569-23.716)/√((1.3451/2+1.5445/2)) = 2.667

Degree of freedom = 24 -8 -2 = 14

t(crit) =  2.15 (95%)     |t| > t(crit) = the difference is significant



Potencial biomarkers – diagnostic value !?
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p = 0,00052  - significant difference

no diagnostic value!

Diagnostic value: if
confidence intervalls
do not overlap!

Healthy            population         Sick  



Multiple independent H0 (comparisons)
p valódi értéke > 0.05

Number of 
independent H0

probabilty of p<0.05 critical “p” for a = 0.05

1 5% 0.0500

2 10% 0.0253

3 14% 0.0170

4 19% 0.0127

5 23% 0.0102

6 26% 0.0085

7 30% 0.0073

8 34% 0.0064

9 37% 0.0057

10 40% 0.0051

20 64% 0.0026

50 92% 0.0010

100 99% 0.0005

n 100(1-0.95n) 1-0.951/n



ANOVA = Analysis of variance
For multiple comparisons regular t test is not proper, because the occurrence of type-I error
accmulates = we would reject the true null hypothesis too frequently.

ANOVA is a generalization of t test for multiple comparisons. It compares mean values but
utilizing variances of different groupings. The variance of the whole set of data is examined
to see that is is solely due to random sampling (statistical fluctuations) or partly caused by
real differences among means...



ANOVA = Analysis of variance
Basic idea: if all the samples were from the same distribution, than their grand-average
would be the same irrespective of the sequence of calculation.

Let's compare the variances:
– for the whole data set;

– for the individual groups (within groups);
– for the means values (among groups).



variance sum of squares DF variances F test

Among k-1 sk
2=SSk/k-1 F=sk

2/sb
2

Within N-k sb
2=SSb/(N-k)

Whole N-1

ANOVA = Analysis of variance

SSk = nj (< x j > − < x >)
2

j=1

k

∑

SSb =
l=1

nk

∑ (xl− < x j >)
2

j=1

k

∑

SSt =
l=1

nk

∑ (xl− < x j >)
2

j=1

k

∑



If  F = sk
2/sb

2 > Fkrit ê reject Ho, there is at least one different group ê

How to figure it out without the multiple comparisons? - post hoc tests!

– Dunnett's  test: one group is the control and compare all the others to this by 
Student's t test   ê k-1 comparisons only, instead of k(k-1)/2

– Tukey's test:  corrected Student's t-test: (<x1> - <x2>) / SE   (<x1>  >  <x2>)
(k*(k-1)/2 comparisons)

– Bonferroni's test: correct the value of a:  a' = a / n   (n comparisos)

ANOVA - which group is different?



"Effect size" - how to quantitate the effect

- correlation type measures:
Pearson corelation coefficient = R
determination coefficient = R2

h2 = SSc / SSt (overestimates the effect)
w2 = (SSc -DFc*MSb) / (SSt + MSb)

- difference type measure:
Cohen: d = <x1> - <x2> / sd
Z' = 1 - 3*(SDp + SDn) / (<x>p - <x>n)

("p" is a positive control, "n"is a negative control)
if Z' ≈ 1 ê pefect assay
if 0,5 < Z' < 1 ê great assay
if 0 < Z' < 0,5 ê poor assay
if Z' < 0 ê useless assay

SS = sum of squares
DF = degree of freedom
MS = mean square
SD = standard deviation



Final remark…
Herbert George Wells, writer:

Statistical thinking will one day be as necessary for efficient
citizenship as the ability to read and write.

(he was great in science fiction J)


