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SUMMARY 
 

DATA: qualitative or quantitative properties. 

POPULATION, FUNDAMENTAL ENSEMBLE: group of those individuals (elements) or objects (together with 

observations) about which the investigator wishes to draw conclusions. The number of elements in a population is N, 

which may be infinite. 

SAMPLE: an appropriate part of the population chosen for the examination in order to draw conclusions about the 

population. The number of elements in a sample is n, and usually n << N. 

VARIABLE: a single general element x of the population. 

ABSOLUTE FREQUENCY: the number of data in one class if the data are grouped in classes. 

RELATIVE FREQUENCY: the ratio of the number of data in one class to the total number of elements in the sample. 

FREQUENCY DISTRIBUTION: a list (table) or graphic representation of frequencies or relative frequencies in the 

classes. 

HISTOGRAM: a graphic representation of the frequency distribution, in which a rectanglular area ("bar") with a width of 

the class represents the frequency within that class. 

THEORETICAL DISTRIBUTION: distribution of the population. 

NORMAL OR GAUSSIAN DISTRIBUTION, N( ): a type of theoretical distribution. It has a symmetrical chape and 

the following parameters: expected value (); theoretical standard deviation ( ). Experimental values influenced by a 

large number of random, independent but small effects follow normal distribution. 

GAUSSIAN CURVE: Histogram envelope of a population with Gaussian distribution if N = ∞ and x → 0, that is, if the 

population contains an infinite number of elements and the class width approaches 0. 

EXPECTED VALUE (OF GAUSSIAN DISTRIBUTION): one of the parameters () of the distribution, a value that 

corresponds to the maximum of the Gaussian curve. In other words, it is the value above or below which half the cases 

fall, and it is also the point that divides the area under the curve in half. 

THEORETICAL STANDARD DEVIATION: measure of the width of the Gaussian curve (). Width of the Gaussian 

curve at half height is approximately 2 

MEAN, AVERAGE: arithmetical average ( x ), the most accurate measure of central tendency used for the estimation of 

the expected value. 

EMPIRICAL STANDARD DEVIATION (s): estimate of the theoretical standard deviation 

( )1()( 2  nxxs i ). The degrree of scatter in the data can be described by measures of variability. The most 

often used one is the empirical standard deviation, which characterizes the average deviation of the data from the mean. 

VARIANCE: square of the empirical standard deviation (s
2
). 

STANDARD NORMAL DISTRIBUTION, N(0,1): normal distribution with parameters  = 0 and  = 1. 

STANDARD ERROR: standard deviation of the sampling distribution of means ( nssx / ). 

CONFIDENCE INTERVAL: interval given by the mean and standard error that contains the expected value with a given 

probability. The  ( xsx 2 ) error limit is used most often at 95%  confidence level. 

CONFIDENCE LEVEL: a number in % expressing the accuracy that corresponds to the confidence interval. 

LINEAR REGRESSION: method of statistical inference about the linear relationship between two variables. 

LEAST SQUARES METHOD: if certain conditions are fulfilled, the best fit line is the one for which the summed 

squares of the distances of the data points from this line is the smallest. 

CORRELATION COEFFICIENT: a number (in the range between -1 and 1) representing the strength of the relationship 

between variables. (  0r no relationship,  1r   relationship of maximal strength) 

HYPOTHESIS TESTING: methods used for deciding about the acceptance or rejection of a hypothesis. 

NULL HYPOTHESIS (H0): an initial statement in hypothesis testing. A specific hypothesis to be tested. A negative 

response to the asked question. 

ALTERNATIVE HYPOTHESIS (H1): a hypothesis that is valid if the null hypothesis is rejected. An affirmative answer 

to the asked question. 

REGION OF REJECTION: if the null hypothesis is true, then this region contains the sample with a very low 

probability. If the sample falls within this region, then the null hypothesis is rejected. 

REGION OF ACCEPTANCE: opposite, or better said complement of the region of rejection. 

TYPE I ERROR: rejecting the null hypothesis when it is in fact true. 

TYPE II ERROR: accepting the null hypothesis when it is in fact false. 

STUDENT'S t -TESTS: statistical tests used for examining the hypothesis about the expected values of one or more 

variables of the normal distribution. 

CHI-SQUARE TEST: statistical tests used for examining the independence of categorical variables. 

DEGREE OF FREEDOM: the number of independent members or sample elements. Evidently, every element cannot be 

independent if there is a relationship between them. By subtracting the number of related elements from the total sample 

size we obtain the degree of freedom, that is, the number of independently chosen elements. 
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INTRODUCTION 
 

There is a story about a man, who had whiskey and soda on 

Monday, gin and soda on Tuesday, and rum and soda on 

Wednesday. Because the result was always the same, he 

drew the conclusion, that soda made him drunk. 

 

Maybe not in terms of whiskey and soda, but our behavior 

resembles that of the man in the above story. Many of us 

draw inappropriate conclusions easily and make 

decisions based on them. One tends to generalize from 

single cases and select subjectively from the available 

information for the purpose of self-justification. Standpoints 

and opinions made this way are often very hard to change. 

 

In first approximation, statistics is the field of science that 

helps to combat this general “disease”. It helps to arrange 

one’s thoughts critically and keeps skepticism alive, which 

is the base of every intellectual activity. 

 

Because statistical reports are part of the everyday life, and 

it may seem that everybody knows the methods used to get 

them as well. This is partially true, because anyone, who 

went to school in Hungary in the last twenty years, 

definitely used statistical procedures quite a few times. 

When a student calculates the average of his/her grades 

from different subjects in order to know what he/she could 

expect in the school record at the end of the year, the 

student, though unaware of it, applies a typical case of 

making a statistical estimation. 

 

The word “statistics” has several different meanings. The 

meaning used here stems from the Latin word “status”. Its 

original meaning is condition, status, the state of things. 

Collected data make it possible to know and describe the 

status. Data are individual facts, qualitative or 

quantitative properties. Typical everyday examples of data 

are, for example, personal data such as name, birthplace, 

date of birth; names and prices of the products sold in a 

shop; regarding medical conditions they may be the 

paleness of the face, blood pressure, or a result of any 

laboratory diagnostic test. 

 

Usually, data collection has a purpose. One asks a telephone 

number of someone to be able to call him or her later. The 

attitude of just collecting data in the hope that it may be 

useful for something, and trying to find the aim later is 

usually not appropriate (it is the characteristic of secret 

agencies only). Collected but unsorted data are usually 

entirely useless. What could we do with telephone numbers 

listed in the order of theirs arrival to the switchboard? Often 

data are sorted according to their importance. The doctor 

applies this when describing the condition (status) of the 

patient. Thus, data must be collected, processed, 

conclusions need to be drawn, and most of the time 

decisions should be made. Statistics is a field of science 

that is able to do all these. The “bio” prefix indicates that 

here the methods of statistics are used to analyze 

phenomena of the living world. Methods of medical 

statistics are even more specialized for problems occurring 

in medicine. 

 

It is not easy to convince freshmen in medicine that 

statistics is very important. Furthermore, it is inevitable 

for them. Some examples are listed below. 

 

Students have to carry out different measurements during 

most practices, some theoretical classes and later during 

their advanced studies as well. Reliable conclusions can 

be drawn from the measured data only by statistical 

methods. 

 

Case-history sheets and laboratory files contain a large 

number of data. It is extremely important that physicians, 

dentists and pharmacists are able to use statistical methods 

to evaluate data properly, draw conclusions, and judge 

the reliability of the results. Statistics can save us from the 

deceptions present in the overwhelming advertisements of 

new drugs and procedures. 

 

Understanding medical literature is sometimes difficult, 

as it often contains statistics. As an example, let us quote 

from a medical paper: "In the first group of patients the 

average  preoperative  refractive disturbance (ametropia) of 

–3.94 ± 1.3 diopters decreased during a one year follow-up 

period to – 0.47 ± 0.54 value” and later: ”Statistical results 

were analyzed using a two sample t-test and regression 

analysis.” The question is, what do those numbers mean and 

what are these methods? 

 

Last but not least, statistics provide a unique view, a way 

of thinking, which is very similar to the way of thinking 

of physicians. Let us illustrate this with an example. 

Suppose that your patient complains about a headache, and 

you want to find a reason. Based on your medical studies 

you will recall most of the possible reasons of a headache, 

such as: 

 

1. High blood pressure. 

2. Improper eyeglasses. 

3. Inner pressure of the eyes is too high. 

4. A tumor in the head. 

5. Calcification of cervical vertebra. 

6. Sensitivity to weather changes. 

7. An oxygen-deficient working environment. 

 

Because there could be several true answers, all the 

possibilities must be checked one by one, and decide 

whether the suspicion was well formulated. This procedure 

is principally the same as the hypothesis testing method that 

will be discussed later. 

In the first approximation, there are four types of statistical 

procedure: data collection, organization of data, analysis 

of data and the drawing of conclusions. 
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DATA COLLECTION AND MAIN TYPES OF DATA 
 

As mentioned earlier, data collection is motivated by a goal. There are data that are 

used only to identify and distinguish certain things. Larger number of data is 

collected in a hope that following data analysis a previously formulated question 

can be answered. The way of collecting data or accessing data is called 

“experiment” in general. Some data are already known, we just need to ask 

someone about it. Other data need to be measured somehow. In this regard the 

investigation of a natural phenomenon or casting a dice are both experiments. The 

data (the result of the experiment) can be of several different types. Qualitative 

data can be sorted into categories (categorical data). Quantitative data are 

characterized by a number (numerical data). Qualitative data are, for example, the 

names of the diseases, types of pathogens, or the severity of the condition. The size 

of the rash or the duration of the sickness can be expressed by a number (and a 

unit), therefore these are numerical (quantitative) data. There are two kinds of 

qualitative (categorical) data depending whether they can be sorted naturally in 

some order. An example of ordinal (sortable) data is, for example, the severity of 

the disease: modest, medium, strong. Nominal (not sortable) data are for example 

the blood groups: A, B, AB, 0.  There are two sub-groups within the numerical 

data as well: continuous and discrete. If the result of the measurement can have any 

value within a certain interval, it is called continuous (e.g., weight, height, blood 

pressure). Other data can only have discrete values (e.g., number of children in the 

family). The above types of data are summarized in table 1. We have to mention 

that continuous data are only theoretically continuous. In practice we always work 

with discrete numbers (otherwise one would need to use an infinite number of 

decimal digits). 

 

ORGANIZING DATA, FREQUENCY AND GRAPHIC 

REPRESENTATION 
 

In everyday life we often deal with a large number of data that are connected to a 

given problem. We need to organize and summarize our observations so that we 

obtain an overview of the data. 

 

 

INFECTION 

 

DISEASE 

 

Absolute 

frequency 

 

Relative  

frequency 

 

 

bacterial 

Salmonellosis (Food 

poisoning by Salmonella) 

 

94 

 

 

208 

 

0.280 

 

 

0.619 Scarlatina (Scarlet fever) 102 0.304 

Other bacterial 12 0.036 

 

 

viral 

Hepatitis infectiosa 

(Hepatitis) 

 

22 

 

 

 

126 

 

0.065 

 

 

 

0.375 
Mononucleosis infectiosa 

(Mono) 

22 0.065 

Lyssa (Rabies) 74 0.220 

Other viral 8 0.0238 

other Other infections 2 2 0.006 0.006 

        total: 336 336 1.000 1.000 

 

Table 2. A summary table of infections. 

 

Table 2 summarizes the infections reported to occur in Budapest in October, 2000. 

Numbers in the first column of the table (94, 102, and so on) are occurrences of 

individual infectious diseases (Salmonellosis, Scarlatina, etc.) during the given 

time period. These numbers are called absolute frequencies. In the next column, 

subtotals (208, 126, 2) of the first column are calculated that correspond to larger 

groups of bacterial, viral or other types of infections. These are also absolute 

frequencies. 

 

From the absolute frequencies the relative frequencies can be calculated. The 

relative frequency equals the absolute frequency of the category divided by the 

total number of cases (336). Relative frequencies are always numbers between 0 

and 1 and are listed in the next column of the table. If percentage is preferred, 

multiply these relative frequencies by 100. Thus, relative frequency is a ratio, as 

 
 

Table 1. Classification of data. 

  

 
 

Fig. 1a. Bar graph. Absolute frequencies 

of infections as a function of categories. 

  

 absolute frequency 

 absolute HäuFig.keit 

 abszolút gyakoriság 

  

 relative frequency 

 relative HäuFig.keit 

 relatív gyakoriság 
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we can see from the definition. To be appropriate, when speaking about relative 

frequency, both the category and what we compare it to must be specified. 

In our example, if the question is how frequent is salmonella infection among the 

bacterial infections, we have to divide the number of salmonella cases (94) by the 

total number of bacterial infections (208). The result (0.452) is a relative 

frequency, but here the comparison was made with the bacterial infections (208) 

rather than the total number of the infectious cases (336). 

 

There are many ways to represent the absolute and relative frequencies graphically. 

There are two of these illustrated in Figs. 1a. and b.  

 

GRAPHICAL REPRESENTATION OF THE RELATIONSHIP 

BETWEEN DATA 
 

It occurs many times in our experiments that several characteristics are 

determined simultaneously, or one attribute is measured as a function of a fixed 

parameter (e.g., as a function of time, like the regular measurement of body 

temperature in the hospital). In such cases we are interested in the relationship, the 

connection between the two sets of data. To get a better overview of data it is 

practical to plot them in a graph. Here the word connection is used in a very 

general sense, and it does not mean causality. 

 

When plotting data we have to make two important decisions: the scaling of the 

axes and the choice of the staring point (origin). It is not necessary to represent 

the origin (zero values of both axes) on the graph. For example, if the index of 

refraction of protein solutions is measured, we know that we cannot get lower 

value than the index of refraction of distilled water (1.333). 

 

The rule of thumb is that the graph (data points) should fill the available area of 

display as much as possible (see Fig. 2). It is useless, however, to increase the scale 

so much that the analysis of the data would give greater accuracy than the 

measurement itself. Such an apparent increase of accuracy may be confusing. 

 

 
 

Fig. 2.  Improper and proper arrangement of the graph. 

 

Measured data always have errors. Hence, when drawing a line through the 

measured data points, draw a smooth line across the data rather than connecting the 

scattered points. Try to display equal number of points above and under the curve 

in such a way that their distances from the curve roughly identical. This way in 

most cases (except of some rare examples), you will get a smooth, continuous 

curve fitted to the measured data (see linear regression). 

 

STATISTICAL INFERENCE AND PROBABILITY 

CALCULUS 
 

The final goal of the statistical methods is to draw conclusions. The scheme of 

statistical inference is very similar to logical induction. In logics, the syllogism is a 

form of induction, where certain statements necessarily indicate further 

statements. (Classical example: every man is mortal. John is a man. Therefore, 

John is mortal.) 

 

Statistical inference is not entirely the same as logical inference, however.  Logical 

inference gives a statement that is 100 % sure, whereas statistical inference 

yields a statement of given probability (always less than 100 %). We may be 

mistaken in case of statistical inference. For example, if we state something with 

Check your knowledge: 

Is there a contradiction in the following 

statement? 
“In my group the relative frequency of girls is 

smaller than in the group of my friend, but we 

still have more girls in our group.” 

  

  
Fig. 1b. Pie chart. Relative frequencies 

of the viral infections (categories). 
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95 % probability it means that in 5 cases out of 100 we were wrong, the inaccuracy 

is 5 %. The accuracy of our statements can be expressed in numbers. 

 

By reformulating the statement we can decrease the inaccuracy at will, but this 

may yield more meaningless statements. Let us have an example. The police report 

after a bank robbery says: “… eye witnesses saw the suspects getting in a car; it 

was concluded that the suspects left the scene with their own car or by a taxi, or 

they may have used a stolen or a rented car.” If we decrease the inaccuracy of 

our inference, it has a price by which the usefulness of the conclusion is 

reduced; it is less valuable. Our inductions are governed by these two opposite 

tendencies. 

 

The reason of inaccuracy (in contrast to logic) is that in case of statistical 

inference we are not able to take all of the circumstances into account. A coin 

tossed is not governed by the mere chance when heads or tails fall. The situation is 

that we do not know all the necessary data with the right accuracy that will 

determine unambiguously the final position of the coin, that is, whether the result 

will be heads or tails. Because we cannot take every circumstance into account, we 

cannot give a definite answer; hence we say that this event is random, where the 

word “random” expresses just the lack of our knowledge. 

 

In association with gambling it was observed a long time ago that even the 

random, mass events follow some rules. If the experiment of tossing coins is 

repeated many times, the result will be heads in the half of the cases and tails in the 

other half. We cannot prove this, but based on the experience, we can say that in 

case of a large number of (independent) experiments the relative frequency of the 

heads [(number of heads)/(number of heads + tails)], and that of the tails [(number 

of tails)/(number of heads + tails)] show stability (law of large numbers), and both 

will be around ½.  Based on this, we can say that the probability (chance) of 

getting heads in one toss is exactly ½.  The probability of getting tails is obviously 

the same. 

 

Probability calculus gives a mathematical description of laws of mass events in 

the material world that are not determined unambiguously by the 

circumstances. Our experiments, observations and data fall into this category. 

Consequently, statistics are based on the principles of probability calculus. 

  

POPULATION, VARIABLE, SAMPLE 
 

Everyone makes measurements, experiments or observations. Some examples are 

listed in the Table 3. 

 

W H O  M E A S U R E S  W H A T ?   

PHYSICIST  PHYSICIAN  STUDENT DURING THE 

PRACTICE OF MEDICAL PHYSICS 

(topic and number of practice) 

length body height red blood cell diameter (3.)  

frequency pulse rate pulse rate (9., 20.) 

temperature body temperature – 

concentration blood glucose level  blood plasma protein concentration (5.) 

voltage ECG-signal ECG-signal (24.) 

power density hearing threshold hearing threshold (22.) 

pressure blood pressure blood pressure (   ) 

impedance skin impedance 

(resistance) 

skin impedance (21.) 

  

Table 3. What does a physicist, a physician and a medical student measure? 

 

Let us emphasize again that the goal of our measurements is to understand 

something or to answer a question. 

 

Let us choose, as an example, the measurement of pulse rate that can be easily 

done during the practice of medical biophysics as well. The pulse rate, the 

frequency of heartbeat, is technically a continuous parameter; we use discrete 

values (integers) just for simplicity, and because we are used to that. The unit of 
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the pulse rate is 1/minute. We will work only with the number values in the 

following, but note that all the final results should have units, too. There are many 

questions which could be answered by this measurement.  

 

Such questions are: 

1. WHAT IS THE VALUE of pulse rate of medical student Doris Diligent? 

2. WHAT IS THE normal VALUE of the pulse rate? 

3. DOES the pulse rate CHANGE after holding breath for one minute? 

4. IS THERE A DIFFERENCE between the pulse rate of girls and boys?  

5. Etc., etc. 

 

Let us examine the questions one by one. Without knowing any statistics one 

would think that answering the first question is very easy. We just need to measure 

the pulse number of Doris, and we will have a result and that’s it. However, if 

one has heard about statistics already, then skepticism wakes up and instead of a 

definite answer even further questions will be asked. Such questions are: is this the 

right answer for sure? Did I make any mistake during the measurement? If the 

investigator knows that "chance" factors also influence the experiment, then an 

“accurate” measurement cannot be performed no matter how hard it is attempted. 

Hence a decision is made to perform the measurement again and again. 

 

When performing a measurement several times, it is always assumed that the same 

thing is measured again, and the same result is expected. In other words, the 

pulse rate of Doris is expected not change in the long run in any direction, and 

the results might differ only due to random variations. We can say that the result 

have two parts: the main one is the deterministic (constant) and the subsidiary one 

is the stochastic (random). Naturally, these two parts can not be separated directly. 

 

Multiple measurements can be regarded as if there was a set of all possible 

observations, called the population (fundamental ensemble), and during every 

measurement we choose an element of this set. In our example the set has an 

infinite number of elements, but this is not a necessary condition. An element of 

this set in general is called the variable, and x is its usual symbol. The variable 

may attain different values. The value of the variable is given by the particular 

measurement. 

 

A single measurement is not sufficient to answer the other questions either. In the 

case of the second question we assume that there is a fundamental deterministic 

normal pulse rate, and the pulse rate of the individuals is randomly scattered 

around that value. In this case we can imagine the population as a large but finite 

number (say, the total number of people in a country, N = 1 245 782, Fig. 3.) of 

individuals with their known pulse rates in that moment. These individuals together 

with their pulse rates will form the population. Thus, in this case the population has 

a finite number of elements. 

 

In the first case the measurement was repeated on the same person (many times), 

and in the second case the pulse rate was measured (once) on a large number of 

people. The variable is very similar in both cases, but the population is different. 

The third and fourth questions will be discussed later. 

 

Although the questions ask something about the population, in most cases we do 

not and cannot know the whole population. Therefore, we choose a sample from 

the population that contains a total N elements. Sampling means choosing n 

elements, ideally randomly, from the population. Sampling happens, for 

example, when we measure several times. Sampling makes sense only if n can be 

much smaller than N (see Fig. 3). 

 

DISTRIBUTION OF THE SAMPLE, FREQUENCY 

DISTRIBUTION, HISTOGRAM 
 

These concepts will be introduced through an example. Let us choose the second 

question from the list (WHAT IS the normal value of the pulse rate?) and measure 

the pulse rate of the students of a group. The student group together with the pulse 

rate data can be considered as a sample (n = 20) taken from the population related 

to the question (see Fig. 3). The collected data (xi, where i = 1, 2, 3, 4, 5,…,20) are 

listed in the Table 4 below. 

 sample 

 Stichprobe 

 minta 

  

 frequency distribution 

 HäuFig.keitsverteilung 

 gyakorisági eloszlás 

  

 histogram 

 Histogramm 

 hisztogram 

  

 variable 

 Variable 

 változó 

  

 
 

Fig. 3. Illustration of population, 

variable (pulse rate, the values of 

which are indicated on the chest of the 

figures) and sample. 
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Table 4. Pulse rate values of the student group (example). 

Such a table may look much better than a simple list of numbers.  In order to make 

sense out of the values and grasp their meaning, we have to organize them. If we 

plot our data on a coordinate line, the variation around a “normal” value becomes 

apparent. 

 

 
Fig. 4. Pulse rate data plotted on a coordinate line. 

 

Albeit arbitrary, three regions may be distinguished: I. many datapoints, II. few 

datapoints, III. no datapoints at all. 

 

A reefinement of this picture leads to the concept of the frequency distribution 

that we get by grouping the data into classes. Let us make intervals of the same 

width (classes) through the axis and count the data (frequency) falling in these 

classes. The relative frequency distribution can be calculated as well. The intervals 

need not be of the same width, but this way it is easier to handle them. 

 

Because the given set of individual data can be grouped in more than one way, 

many different frequency distributions can be constructed from the same dataset. 

Table 5 represents one of them. 

 

Table 5. One possible frequency distribution of the sample. 

 

The frequencies and relative frequencies can be represented graphically in a bar 

diagram (bar graph). The graph consists of a series of rectangles, each with an 

area proportional to the frequency of data in the corresponding class interval 

represented on the horizontal axis. The method can be used with uneven class 

distribution as well. This graphic representation of data is called the histogram. 

Equal class widths are convenient, because in this case the frequency if 

proportional to the height of the rectangle. 

 

Fig. 5 shows several different histograms constructed from the same pulse rate 

data. Class widths are equal in the first two histograms, but the class limits differ; 

in the last two cases the class widths were changed as well. There are no strict rules 

for constructing histograms, although some esthetic guidelines may apply (see 

Comment 1). 

 

As we can see in Fig. 5, classes of the variable are represented along the horizontal 

axis of the histogram and the absolute and relative frequencies along the vertical 

axis. Every small rectangle (or square) corresponds to one measured value, thus the 

total number of rectangle units equals the total number of measurements (n = 20). 

This is the total area under the frequency curve. The total area under the relative 

frequency curve is always 1, or 100 % (because of the division with the total 

number of measurements n). 

Although the shapes of the four histograms (Fig. 5) are rather different, which 

depends on their construction, some regularity can be seen. We can observe that all 

66 56 89 63 66 69 71 68 58 69 

78 66 64 84 74 76 69 77 74 76 

CLASS LIMITS  FREQUENCY RELATIVE FREQUENCY 

55  xi < 60 2 0.10 

60  xi  < 65 2 0.10 

65  xi < 70 7 0.35 

70  xi < 75 3 0.15 

75  xi < 80 4 0.20 

80  xi < 85 1 0.05 

85  xi < 90 1 0.05 

total: n = 20 1.00 

Comment 1: 
The appearance of the histogram is "esthetic" 

if it is neither sporadic (contains no gaps), nor 

jam-packed into one or two classes (it has a 
structure).  

If we want to 

construct the 

"optimal" histogram 

into a quadrangle 

area, then the 
number of classes 

(intervals) should 

roughly be equal to 
the maximum 

number of elements 

in one  
interval, both denoted by m. Then one 

element occupies a quadrangle area (instead a 

rectangle). According to the figure, the 
optimal number of the classes is:  

nm 2 . 

The optimal size of the classes (xopt) can be 

obtained by dividing the difference of the 
maximum (xmax) and minimum (xmin) of the 

data by the optimal number of classes:  

m

xx
x minmax

opt


 . 

 The first two histograms of Fig. 5 were 

constructed in accordance with these  
principles. 

  
 

Fig. 5. Several possible histograms of 

the sample. The first was made based on 

Table 5. Every rectangle represents one 

observation. 
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of them have a "hill" roughly in the middle and around the same value, and their 

"width" is very similar. If the data size is increased and at the same time the class 

width decreased (there is no limit to continue the process), then the rough steps of 

the envelope observed imitially gradually smooth into a continuous curve (Fig. 6.). 

 

DISTRIBUTION OF THE POPULATION, THEORETICAL 

DISTRIBUTION CURVE 
 

Let us have a closer look at the tendency shown in Fig. 6. If the population consists 

of a finite number of elements (N ), then upon increasing the number of the sample 

elements (n) the sample size will eventually reach the polulation size, hence the 

sample will contain all the elements of the population (n = N ). Thus, the 

distribution of a sample with N elements yields the distribution of the 

population. The only uncertainty arises from the arbitrary choice of the class 

limits. For populations containing an infinite number of elements we can only say 

that upon increasing the sample size the sample distribution approaches better and 

better that of the population. In this case the population is described by a 

theoretical distribution. 

 

The population distribution determines all the properties of the variable. It 

provides the probabilities of all the possible values of the variable (nothing more 

can be said about the variable). Let us have an interval (a, b) on the coordinate 

axis. The probability that a randomly chosen value falls within the interval (a, b) 

equals the area that lies under the distribution curve in this interval (from a to b). If 

in the interval (a, b) the distribution curve has small values, the area under the 

curve is small, and the corresponding probability of incidence of these values of 

the variable will be low (Fig. 7/1). However, if in the interval (a, b) the distribution 

curve has large values, the area and the corresponding probability will be high 

(Fig. 7/2). If the width of the interval is increased, the area under the curve 

increases too, which means higher probability of incidence for these values (Fig. 

7/3). Similarly to the histograms, the total area under the curve equals 1, because 

the "interval" (a, b) which in this case spans from –
 
∞ to +

 
∞ contains any 

randomly chosen value for sure. (See earlier remark about the inaccuracy and 

usefulness of a statement) 

 

 
Fig. 7. Meaning of the area under the distribution curve (see text). 

 

It is important to note that we always speak about an interval, because there is no 

area above a single value (the width of such an "area" would be zero). 

Consequently, in case of continuous variables probability that a randomly chosen 

value exactly matches a given number is zero. This technically means that all the 

measured data are different. In practice, however every measured number means 

an interval as we always use numbers with finite decimal places. The last digit is 

always rounded. (See earlier: continuous and discrete character of data). 

 

The theoretical distribution describes all the possible data (i.e., the population), 

whereas the histogram concerns only the elements of a sample taken from the 

population (i.e., the data of the specific measurement). 

 

PRINCIPAL THEOREM OF STATISTICS 
 

Let us recall how we obtained the theoretical distribution: the number of elements 

in the sample, thus the number of measured data was increased. The principal 

theorem of mathematical statistics is that in case of large samples, the empirical 

distribution function (i.e., the envelope of the histogram) approximates very 

well the theoretical distribution function. Consequently, one may hope that the 

more frequently data occur within a certain interval in the sample, the more 

probable is the appearance of these values in the population as well. 

 
 

Fig. 6. Increasing the data size and 

decreasing the class width gradually 

smoothes the envelope of the histogram. 
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A characteristic parameter of a population is determined by mathematical statistics 

through the examination of only a certain number (preferably few) of its elements. 

Sampling means choosing the elements to be examined (the sample) in a way that 

enables us later to draw reliable conclusions (inferences) about the whole 

population. This is usually achieved by random selection of sample elements 

(See Comment 2). Notably, the problems and aspects are particularly relevant in 

medicine.  
 

NORMAL OR GAUSSIAN DISTRIBUTION 
 

Depending on the examined variable, the theoretical distribution may have 

different shapes. However, in most of the cases it is a symmetric bell-shaped 

curve with one peak (we shall give the reason for this later on), which is called 

normal or Gaussian distribution. This type of distribution is illustrated in Fig. 6. 

and Fig. 7. The mathematical expression of the Gaussian distribution function is: 

2

2

2

)(

22

1
)( 










x

exg .                                      (1) 

 

Th expression may seem somewhat complicated, but in fact it is a modification of 

the 
2

)( xexf  function, decorated with some parameters. The normal or Gaussian 

distribution is not a single distribution function. Due to its parameters it describes a 

whole family of them: the shape of the curves is similar, but their position, width 

and height may vary (see Fig. 8). 

 

 
 

Fig. 8. Some Gaussian distributions with different position ( ) and width ( ). 

 

Starting in the centre of the curve and working outward the height of the curve 

descends gradually at first, then faster and finally slower again, resulting in a bell-

shaped curves with tails spanning to the infinity. Although the curve descends at 

the extremes toward the horizontal axis, it never actually touches it, no matter how 

far out one goes. The total area under the curve is 1 by definition (see earlier: 

theoretical distribution). 

 

 
 

Fig. 9. The bell-shaped Gaussian distribution and its parameters. 

  
  

Carl Friedrich Gauss (1777-1855), 

German matematician. 

Comment 2. 
The sample has to be representative with 

respect to the population. It is a fundamental 

requirement that the distribution of the 
investigated parameter, apart from random 

sampling variations, has to be the same as 

that in the whole population. We have to keep 
this in mind when designing experiments. 

When we organize a survey about the 

occurrence of thyroid problems, for example, 
we have to collect data from every region of 

the country, taking into consideration the 

density of the population. Over-
representation of certain regions may lead us 

to incorrect conclusions. As an example, 
iodine-deficient tap water leads to much 

higher occurrence of the symptomes of 

hypothyroidism in the northern counties of 

Hungary than in the southern ones. 

 normal distribution,  

        Gaussian distribution 

 Normalverteilung, Gauss Verteilung 

 normális eloszlás, Gauss-eloszlás 

  

 theoretical standard deviation, SD 

 theoretische Streuung 

 elméleti szórás 

  

 mean, average 

 Durchschnitt 

 átlag 

  

 empirical standard deviation, SD 

 empirische Streuung 

 tapasztalati szórás 

  

* (Unfortunately, the word "average" is often 

used to refer to any measure of central 

tendency, therefore it is better to use "mean", 
and we shall follow this practice.) 

  

 expected value 

 Erwartungswert 

 várható érték 
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The constants  and  in the previous formula are the parameters of the 

distribution. These parameters specify one curve from the infinite number of 

possibilities. The parameter  is the so-called expected value that gives the 

position of the maximum of the curve on the x axis. The parameter  is the 

theoretical standard deviation, which characterizes the width of the distribution. 

The width of the distribution is roughly 2 at the half height (more precisely: the 

so-called inflection points of the curve are at a distance of  from the  value) (Fig. 

9). Based on this, the customary notation for the normal distribution is N(). 

 

Some general statements are valid for the relationship between the bell-shaped 

normal curve and its parameters. About two thirds (68 %) of the area lie under the 

curve between    and    and 95 % of the area is between    and 

 +  Only two thousandths of the area under the curve falls beyond the 

(  ,   ) range, thus most of the area is included within a 6 long section 

around the expected value. The height of the curves is not an independent 

parameter; it is inversely proportional to  as a result of the fixed (unit) total area 

under the curve. 

 

Among the infinite number of possible normal distributions there is a special one, 

for which  = 0 and  = 1. This distribution is called the standard normal 

distribution, and according to the notation defined above it is N( 0,1) (second 

curve from the left on the Fig. 8). 

 

The outstanding significance of the normal distribution is pointed out by the well 

known central limit theorem of probability calculus. According to this, the 

values that are influenced by many little and independent effects follow a 

normal distribution. This explains why the majority of variables occurring in 

nature are normally distributed. 

 

As a "medical" example, the Gaussian distribution of body height and blood 

pressure can be mentioned. The height of adult men in Hungary corresponds to the 

N( 171, 7) distribution (measured in cm). The diastolic pressure, measured in 

Hgmm, of schoolboys follows the N( 58, 8) and that of smoking young men 

follows the N( 84, 10) distribution. 

 

Let us have a closer look at the first example of the heights, where 3 = 21 (cm). 

We can say that the height of the vast majority of adult men (more than 99 %) is 

between 150 and 192 cm. There are a few 2-meter-tall men, but this is not typical 

at all. The most common height is 170 cm, but one can meet men of 160 and 

180 cm very often too. This shows an important feature of the living world: 

although there are typical values, the diversity, that is the difference between 

individuals is very important, too. 

 

in the second example one may notice at a first glance that the blood pressure of 

smokers is not only higher (84 > 58), but its theoretical standard deviation is larger 

(10 > 8) as well. However, if one calculates the relative (theoretical) standard 

deviation, which is the   ratio, the situation will be the opposite 

(10/84 ≈ 0.12 < 8/58 ≈ 0.14). Often the relative standard deviation, which can be 

expressed in percentage (( ∙ %)), reveals more than the absolute standard 

deviation. Standard deviation may be small or large, but what is important is how 

large it is relative to the expected value. Thus, determination of both  and  is a 

very important task. The "exact" determination of parameters is, however, a 

tedious work, and in case of an infinite number of elements in the population it is 

impossible. The parameters will only be estimated.  

 

ESTIMATION OF THE PARAMETERS, STATISTICAL 

PROPERTIES OF THE SAMPLE 
 

We know that the Gaussian curve is determined unambiguously by its two 

parameters (  and ). Our goal is to give the best possible estimate for these 

parameters by using the data of a sample. 

 

The expected value (  ) is estimated most often by the mean ( x ), which is the 

arithmetic mean (average*) of the data (elements of the sample): 

Comment 4. 
Table of the data: 

xi n = 20 

x1 66 

x2 56 

x3 89 

x4 63 

x5 66 

x6 69 

x7 71 

x8 68 

x9 58 

x10 69 

x11 78 

x12 66 

x13 64 

x14 84 

x15 74 

x16 76 

x17 69 

x18 77 

x19 74 

x20 76 

 ix 1413 

The mean of the pulse rate: 

71
20

1413





n

x
x i (1/min)  

(rounded). 

The sum of squares: 

 

55.1246
20

1413
101075

2

2
2







n

x
xQ i
ix

 

The variance: 

66
19

55.1246

1

2 



n

Q
s x (1/min)2 

(rounded). 

The empirical standard deviation: 

8
19

55.1246

1





n

Q
s x (1/min)  

(rounded). 

The degree of freedom: 19. 

Comment 3. 

Further options for estimating the expected 

value  : 
1. The mode is the number that occurs with 

the greatest frequency, namely the value 

corresponding to the maximum of the 
frequency distribution. As the frequency 

distribution is ambiguous (depends on the 

choice of classes), so is the mode. When there 
are only few data available, it is especially 

not a good attribute. (The mode of the data 

from the Table 4 is, according to the upper 
graph of the Fig. 5, between 65 and 70.) 

2. The median is the middle one or the 

average of the two middle ones from the data 
organized in ascending order. Note that 

extreme data do not influence the value of the 

median. Especially when the measured 
extreme values are unreliable for technical 

reasons, this is the best estimate of the 

expected value. (The median of the sample 
given in Table 4. can be read from the Fig. 4. 

as 69.) 

(In case of Gaussian distribution and a 
sample of large number of elements we have: 

mean ≈ mode ≈ median 

(Skewed distributions also exist where this 

statement is not valid.) 
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n
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n

xxx
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n

i

i

n





 121 

.                                (2) 

 

 

The mean is the most stable central tendency measure of the distribution that is 

responsive to the exact value of each element of the sample, and is least sensitive 

to the change of the sample. What makes the mean of high importance is that the 

sum of all deviations from this number equals zero (because the sum of the 

negative deviations will be equal to the sum of positive deviations): 

  




n

i

iii xnxxxxx

1

0)( .                  (3) 

If we imagine the data spread across a board according to their values, then the 

mean corresponds to the position of the balance point of the distribution. 

 

The theoretical standard deviation   is estimated from the squares of the deviation 

of the points from the mean. It is called the empirical standard deviation (s), and 

it is defined as: 

1

)(

1

2










n

xx

s

n

i

i

.                                             (4) 

To avoid misunderstanding, the variable is often indicated in the subscript sx. The 

square of the empirical standard deviation is called the variance: 

 

1

)(

1

2

2










n

xx

s

n

i

i

..                                                                                                (5)  

 

Because the sum of the squared deviations (sometimes called sum of squares) 

present in the numerator of the above formula and very similar terms (quadratic 

expressions) will occur in our calculations very often, it is convenient to introduce 

a special notation (Q) for it. Because calculation of the sum of squares is rather 

tiresome, we derive an equivalent but more calculation-friendly form of this 

expression: 

n

x

xxxxxxxQ

n

i

i
n

i

n

i

n

i

iiiix

2

1

1 1 1

22 ))(()(


















  



   .              (6) 
 

(n – 1), the denominator in formulas (4) and (5), the expression, is called the 

degree of freedom. This term of statistical calculus is related to the estimation of 

parameters and is closely connected but obviously not always equal to the sample 

size (number of datapoints). In the beginning, the degree of freedom of the sample 

of n elements is n. If, however, a newly added value is estimated from pre-existing 

values of the sample, then the number of the actually used previously estimated 

values must be subtracted from the original number of freedom n. Because in the 

calculation of the empirical standard deviation the previously estimated mean of 

the same sample is needed, the degree of freedom is n–1. In more complicated 

cases there will be a formula given for the determination of the degree of freedom. 

(Comment 4 contains the calculation of the most important characteristics of the 

sample from Table 4). 
 

The estimated and „true” values of a parameter are somewhat different. This 

difference is the error of the estimated parameter (discussed later). There are 

essentially two types of error: inaccuracy and distortion. Inaccuracy is the error 

which causes a random deviation from the true value in either the positive or 

the negative direction. Distortion causes the estimated value of the parameter to 

be systematically smaller or larger than the "true'' value of the parameter. 

Whereas inaccuracy can be estimated, distortion cannot. 
 

Using the definitions of the mean and empirical standard deviation given above 

(leaving distortions out of consideration) the following statement can be made: as 

the number of sample elements approaches infinity, the mean approaches the 

 variance 

 Varianz 

 variancia 

  
 degree of freedom 

 Freiheitsgrad 

 szabadságfok 
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expected value and the empirical standard deviation approaches the theoretical 

standard deviation with higher and higher accuracy. Or, with symbols: 

 

if     n ,   then  x  and s .                                  (7) 

 

The empirical standard deviation s is the measure of variability of the data. It 

gives the average deviation of the data from the mean. Similarly to the Gaussian 

distribution (Fig. 9), 68 % of the elements of the sample are within the interval 

( sx  ), 95 % are within the interval ( sx 2 ), and more than 99 % are within the 

interval ( sx 3 ). 

 

The interval ( skx  ) calculated from a large number of data (n ≈ 1000) contains 

exactly 95 % of the elements of the sample (k ≈ 2) and it is called reference range 

or normal range. This is used mostly in the field of laboratory diagnostics. (In 

certain medical applications the interpretation of normal range can be different.) 

For 95 % of the healthy people the diagnostic parameter will fall in the normal 

range and for 5 % will be outside of it (see Comment 5). 

 

In this case the distortion is not a problem, because if the entire dataset is 

systematically shifted, the reference range is shifted accordingly. One can 

sometimes observe this when comparing results from different diagnostic 

laboratories. Reference ranges can be slightly different for the same variable, 

because the applied protocols and apparatuses are not the same. 

 

 

CONFIDENCE INTERVAL, ACCURACY AND RANDOM 

ERROR OF THE ESTIMATED PARAMETER 
 

Let us emphasize once again that the error of the estimated parameter can be 

distortion as well, which is usually not possible to determine. Because of this, from 

now on the error will imply inaccuracy only, or random error. As stated before, if 

the number of the elements increases, the mean approaches the expected value 

more and more (see formula (7)), but we still do not know the answer to the 

question of how much the mean deviates from the expected value characteristic for 

the population in case of a sample of n elements. In other words, what is the error 

of the mean? 

 

 
 

Fig. 10. Random sampling distribution of means: pulse rate data and 

corresponding mean of eight groups (samples of 20 students). Note that the means 

of different groups "spread" much less than the data themselves. 

 

As discussed previously, the mean as a central parameter is not sensitive to the 

changes of the sample because all the elements of the sample are involved in the 

calculation, and, especially in larger samples, a single element plays a minor role in 

altering it. Thus, the sample means calculated from randomly selected samples (of 

Comment 6. 

From the pulse rate data we have already 
calculated the mean (71 (1/minute)) and the 

empirical standard deviation (8 (1/minute)). 

The standard error is  

2
20

8


n

s
sx  (1/min); 

and the error limit is (at 95 % confidence 

level) 

xsx 2 =71 ± 4 (1/min). 

(rounded). 

 

The result of the measurement can be stated 
as follows: "based on our experimental 

data we can say with 95 % confidence that 

the expected value of the pulse rate of the 

examined population is in the 67-75 

(1/minute) range" (Fig. 11). 

In order to have the expected value in the 
chosen range with greater certainty or 

accuracy, the number of data has to be 

increased. 
How many is enough? 

There is no a general rule, but for this 

situation we can say some considerations. 
Since the pulse rate is given rounded as an 

integer value, increasing the accuracy beyond 

±1 (1/minute) does not make much sense. 

The question of certainty is ambiguous, but 

99 % certainty or more is rarely needed. 

According to this, if we choose the error 
limit, then n must be increased until the error 

decreases to the value where the 13 xs  

condition is satisfied. 

 

Comment 5. 

"the diagnostic value is in the normal range" 
Let’s make this clear 

with an example. The 

probability of throwing 

6 on a dice is 1/6, 

which is around 17 %. 

Hence the probability 
of not 

 throwing 6 is 5/6, which makes (5/ 6 ≈ 0.83) 

approximately 83 %. 
If instead of the regular 

dice we use an 

icosahedron (a regular 
solid shape having 20 

faces) with numbered 

faces, the probability 
of throwing 20 is 

1/20 = 0.05 = 5 %.  

The probability of not throwing 20 is 
19 / 20 = 0.95 = 95 %.  

Now, we can imagine the strength of the 

statement: "the diagnostic value is in the 
normal range", as it is of equivalent certainty 

to not throwing 20 by an icosahedron. 

 

 standard error 

 Standardfehler  

 standard hiba 
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the same population) are not very different. In other words, the sample means 

( ixxx ,...,, 21 ) "spread" much less around the expected value than the data (Fig. 

10.).  

 

This ''spread" is expressed as the standard error (standard deviation of the 

sampling distribution of means): 

n

s
sx  .                                                   (8) 

 

The final result is usually given in the form of: 

 

x
skx  .                                                     (9) 

 

The result is always an interval, a limiting value in negative and positive 

directions enclosing the expected value from both sides. The problem is how to 

set the value of k. Where are these boundaries? This is ambiguous. The wider the 

range (k is large), the more likely that it includes the expected value, and our 

conclusion is probably right (see earlier: statistical inference). However, a wide 

range is rather useless in the everyday practice. The narrower the range, the higher 

the chance that the expected value is outside the chosen range, and the certainty of 

our conclusion becomes lower. Thus, increasing the estimation certainty and 

lowering the chance of a mistaken conclusion requires a wide range.  By contrast, a 

narrow range is required for making professionally relevant interpretations. 

 

Methods of statistics enable us to declare the extent of accuracy. Accordingly, we 

calculate a range of values about which we are reasonably confident (certain) that 

contains the "true" parameters. The interval is referred to as the confidence 

interval, its limits are called confidence limits, and the degree of confidence is the 

confidence level.  

 

Even though the value of k depends on the number of elements of the sample 

(degree of freedom), for large sample we can say, that if k = 1, the confidence level 

is around 0.68, if k = 2, is approximately 0.95 and for k = 3 it is greater than 0.99 

(see table 6). 

 

 

Confidence level 

(approximately) 

68% 95% 99% 

Confidence interval 
xsx   xsx 2  xsx 3  

  error limit sure error limit 

 

Table 6. Confidence levels and the corresponding confidence intervals. 

 

Having learned all these we may answer the "WHAT IS THE VALUE of ...?" type 

questions (or present the final result of a measurement) according to formula (9) in 

the form of a confidence interval (see Comment 6, Fig. 11). 

 

It is straightforward from definition (8) that the error decreases with increasing the 

number of data: 

if  n ,          0xs ,                                         (10)  

It is visible that measuring many times has a good reason. For a fixed confidence 

level we can achieve the narrowing of the confidence interval beyond any limit just 

by increasing the number of data (see Comment 6). 

 

 confidence level 

 Konfidenzniveau 

 konfidencia szint 

  

 confidence interval 

 Konfidenzintervall 

 konfidencia intervallum 

  

 
 

Fig. 11. Error limit, calculated from the 

sample contains the expected value of 

the population with 95 % certainty. 
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GRAPHICAL DATA PROCESSING 
 

We have already studied some aspects of the graphical representation of data. Here 

we will show how to use proper scaling of the graph axis in data processing. 

 

The advantages of the linear curve (e.g., that the datapoints can be "connected" 

with a ruler) are so great that we always make an attempt to obtain straight lines, 

even when the relationship between the variables is obviously nonlinear. In these 

cases we make such transformations on the data that result in a linear function. Let 

us consider two examples, the exponential function and the power function. 

 

The exponential function: 
bxeay 

                                                      (11) 

will attain the following form after a logarithmic transformation: 

 

)(lg)lg(lg axeby 
                                           (12) 

 

Here the relationship between lg y and x is linear. The slope of the line is (b lg e), 

and the intercept is (lg a). If special, lin-log scaled graph paper is used, we do not 

have to calculate the logarithm of the y values, because the scaling does the job 

"automatically" (see Fig. 12, upper graph). 

 

The power function: 
bxay                                                         (13) 

 

after a logarithmic transformation becomes: 

 

)(lglg)(lg axby 
                                                 (14) 

 

Here we find a linear relationship between lg y and lg x. The slope of the line is 

(b), and the intercept is (lg a). Calculation of the logarithms can be avoided again 

by using a log-log graph paper. Values of x and y are plotted according to the 

logarithmic ticks and tick marks of the axes (see Fig. 12, lower graph). 

 

(Comment: plotting of the data and transformation of the scales is very easy by 

using dedicated computer programs. We can change the format of the axes from 

linear to logarithmic or change the range of the scale with a single command.) 

 
 

Fig. 12. Linearization of the 

exponential and power functions by 

using lin-log and log-log graph papers, 

respectively. 
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LINEAR REGRESSION 
 

The simplest curve, the straight line, is very easy to obtain subjectively with the aid 

of a paper, pencil and a ruler. However, we can hardly eliminate our doubts about 

the uncertainties arising from the errors of data points with the qualitative 

principles of drawing. Therefore, the problem of finding the straight line of "best 

fit" to the data points still persists. 

 

The equation of a straight line is: 

bxay  ,                                                   (15) 

where a is the slope and b is the intercept. The y-intercept is the y value at x = 0, or 

the point of intersection of the line with the y axis. The straight line is determined 

explicitely by these two parameters. The task is to determine the actual values a
*
 

and b
*
 of the parameters yielding the best fit to our data points. As a first step we 

will examine what is meant by the line of best fit. 

 

Suppose that we have four data points (see Fig. 13a). Furthermore, let us assume 

that values of xi are "exact" (without error), preset values, and only the yi values 

have an error. 

 

Let us draw an arbitrary line, determined by the parameters a1 and b1 

(y = a1·x + b1), across the data points and calculate the vertical distance of the 

datapoints from this line (see Fig. 13b, vertical lines). 

 

The distance of a selected (xi, yi) datapoint from the x axis is given by the yi 

coordinate. At the same time the distance of the (xi, y) line point from the x axis is 

obtained by substitution into the equation of the line as (a xi + b). The difference is 

the vertical distance of the point and the straight line   111 bxayd iii  . 

This distance is positive if the point is above the line and negative if it is below. 

Let us calculate the squares of these distances computed for other points 

(predictive error squares). 

 

Similarly to the sum of squares that we have defined in relation to the empirical 

standard deviation by formula (6), let us sum all the squares of distances calculated 

for the data points (see Fig. 13c, small blue squares) and denote the sum by Qe1. 

Now, let us draw another line — determined by parameters a2 and b2 — and 

calculate the vertical distances (d2i) of the data points from this line as well. As a 

result, we get a sum of squares again Qe2 (see Fig. 13d). Observe, that the points 

scatter around the line more when Qe is larger (Qe2 >Qe1). 

 

As the data points (xi, yi) are always the same, Qe is determined only by the 

variation of the parameters a and b. With this assignment we have defined a 

function with two independent variables a and b and a dependent one Qe:  

 

  




n

i

iie baxybaQ

1

2 
),( .                                       (16) 

 

Due to the squared distances the function Qe(a,  b) is of second degree in both 

variables. This means that it can be represented by a quadratic surface similar to a 

"well" or "pit" having parabolic traces (curves of intersections of the surface with 

planes parallel to the coordinate planes, where a = const, b = const). 

 

If some other conditions are fulfilled (e.g., the standard deviations of the data 

points are independent), then the line of the best fit is the one for which the sum of 

squares Qe(a, b) has an absolute minimum. 

 

We are looking for the coordinates (a
*
, b

*
) for which the function Qe(a, b) has the 

lowest value. In other words: we have to find the coordinates (a
*
, b

*
) of the lowest 

point of the well (the vertex of the paraboloid). The corresponding fitted line is 

called the regression line. The method of finding this line is known as the least 

squares method, or linear regression in general. 

 
 

Fig. 13. Finding the line of the best fit to 

the datapoints. 

 linear regression 

 lineare Regression 

 lineáris regresszió 
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The word regression means "return" or "reversion", expressing the inference to the 

connection (correlation) between the variables from the measured data. 

(Connection does not necessarily mean causality.) 

 

 
 

Fig. 14. The predictive error as a function of the parameters a and b. The sum of  

error squareshas a minimum at the bottom of the well.  

 

After finding the minimum one obtains: 
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where Qxx and Qxy corresponds to the notation introduced in (6), 

—  )1(2  nQs xyxy  is the so-called covariance, 

—  
2
xs   is the variance of x, and 

—  yx,  are the means, respectively. 

 

The line of the best fit can be calculated for any (xi, yi) pairs of data from the above 

equations, even if the points lie obviously along some curve, and not a straight line. 

 

Since it is rather difficult to decide subjectively how well the fitted line 

approximates the experimental points, the determination of the correlation 

coefficient is desirable: 
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 ,                                                 (19) 

where the notations are the same as in formula (17). 

  
 

Fig. 15. Some examples for the values of 

the correlation coefficient. 

wrong 
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The correlation coefficient characterizes the strength of the correlation 

(connection) between the variables, and it has values between +1 and –1. Positive 

values of the correlation coefficient belong to a regression line with positive slope, 

and negative ones to a line with negative slope. If the data points are very close to 

the regression line, value of |r| will be close to 1 (e.g., r = 0.9860). If the line goes 

through every point, then |r| = 1, otherwise the more |r| approaches zero, the greater 

the deviation of the data points from the regression line (see Fig. 15 and Comment 

7 for the example). 

 

We did not discuss yet in what situation and to what purpose can the regression 

analysis be used. An important aspect that we need to take into account is whether 

there is a model describing a causality relation between the variables (x, y) with 

parameters of physical meaning, or the line is fitted just to represent the datapoints 

with the necessary accuracy. Note that even if a model is not known, causality 

between the variables may exist. 

 

An example for the first case could be the relationship between the index of 

refraction of solutions and their concentration (see 4. REFRACTOMETER), or the 

relationship between the optical density of solutions and solute concentration (see 

6. LIGHT ABSORPTION). In these cases the parameters of the regression line can 

be used to extrapolate values (to estimate variables outside the measured range). 

However, the range of validity of the formulas (physical laws) should be taken into 

account. 

 

In the second example parameters can be used only for interpolation (estimation 

of variables inside the measured range) and even if the correlation coefficient was 

close to 1, we may not infer a causality relation (see Comment 7). 

 

Comment 7. 

In the following table the accommodation 

power of the eye is listed as a function of 
age: 

 

age (years) 20 25 35 45 

accommodation 
power (dpt) 

11 8.5 7 3.5 

 

 
 

Fig. 16. Accommodation power of the eye 

versus age. Fitting a regression line to the 

data points. 
 

After plotting the data and doing a linear 

regression the parameters of the fitted line 
are: 

a* = – 0.28;    b* = 16.2. 

The correlation coefficient is: 

r = – 0.98. 

Because there is no known model that would 

connect the two variables, parameters can be 
used for estimation by interpolation only. 

For example, we can estimate the 

accommodation power at the age of 40 as: 

– 0.28 · 40 + 16.2  5 (dpt) 

This value was missing from the table. 

Notably, however, we know that at very 
young age the accommodation power is 

definitely lower than 16 dpt. Therefore, the 

obtained relationship has limited predictive 
power outside the sample range. 

 

 correlation coefficient 

 Korrelationskoeffizient  

 korrelációs együttható 
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STATISTICAL INFERENCE, HYPOTHESIS TESTING 
 

The goal of the calculations that we did so far was to approach, as best as possible, 

the parameters of the distribution of a variable from the sample. This kind of 

quantitative inference belongs to the field of estimations. 
 

However, often we need a qualitative inference. That means, we have to give a 

"yes" or "no" answer to a question. We have already formulated this sort of 

questions earlier concerning the pulse rate. These are of the type: "Does it 

change...?" or "Is there a difference...?". 
 

A decision is always made based on the sample. As answering of the formulated 

question always involves accepting or denying an initial assumption, called the 

hypothesis, this approach is called hypothesis testing (see Comment 8). 
 

The main steps and the features of this testing procedure are demonstrated with the 

following example. "Hypothesis testing" is done in court during criminal trials 

as well. Although this example is certainly an oversimplification, it will help us to 

convey the main steps of the hypothesis testing process. The jury needs to decide 

whether the accused is guilty or not (the judge considers the extent of the sentence 

only). Thus, there is the following yes/no question posed: is the accused guilty? In 

most jurisdictions the presumption of innocence is applied, therefore the accused 

is considered innocent until his guiltiness is proven (i.e., the jury needs to prove 

guiltiness and not innocence). Thus, the "not guilty" statement is the presumption 

made by the court. In other words, it is the initial hypothesis. 
 

The prosecuting attorney (representing the prosecution) has to substantiate the 

charge with evidences. The defense attorney (representing the defense) tries to 

weaken the reliability of the evidences. At the end, the jury evaluates and considers 

the "strength" of the evidences and makes a verdict. The verdict (or decision) 

means accepting or rejecting the presumption, the initial hypothesis, namely 

the "not guilty" statement. Regardless of the verdict, the decision of the jury may 

be right or wrong. Thus, a total of four different outcomes of the process may 

happen. 
 

The decision of the court is correct (right)  

- if the jury accepts the "not guilty" hypothesis and the accused is in fact 

not guilty; or,  

- if the jury rejects the "not guilty" hypothesis (the verdict was guilty) 

and the accused is in fact guilty.  

The decision of the court is incorrect (wrong),  

- if the jury accepts the "not guilty" hypothesis, but the accused is in fact 

guilty; 

- or, if the jury rejects the "not guilty" hypothesis (the verdict is guilty), 

but the accused is in truth innocent (see Comment 9). 
 

Statistical hypothesis testing differs from the judicial procedure (irrespective of 

the simplifications) in a sense that the considerations are based on numerical 

arguments, therefore the decision is less influenced by subjective elements. 

 

We will solve an example (see Problem 1) according to the procedure outlined 

above: 
 

The specific question to answer is: should the sales of a medication be banned 

because the active ingredient content has changed, or, more simply, does the 

active ingredient content of the tablets differ from that specified (c.f., "is the 

accused guilty")? 
 

The statement to be tested, or the presumption, or the initial hypothesis is: The 

further sales of the medication shoud not be banned, because the active ingredient 

content does not differ from the specified value ("presumption of innocence", not 

guilty). 
 

Evidences: The set of data of active ingredient content in mg unit. 
 

The subsequent steps (evaluation, consideration and conclusion) will need a 

more detailed description. If we had all the pieces of information, that is, if we 

Comment 8. 

Types of the hypothesis that are investigated 
most often: 

 

1. Hypothesis about a parameter of the 
distribution. For example, we know, that a 

variable has normal distribution and we want 

to test the hypothesis that the expected value 

of the distribution equals a number 0. This 

type of test is needed as well to decide if a 

variable was changed or not. 
 

2. Hypothesis about the parameters of two (or 

more) distributions. For example, we know 
that two independent variables have both 

normal distributions. We want to check the 
hypothesis that the expected values of the 

variables are equal. This way we can answer 

questions such as do women live longer than 
men in a given population (or in other words, 

is there a difference between their expected 

lifetimes). 
 

3. Independence test. The tested hypothesis is 

formulated as if two or more variables are 
independent (if there is a connection between 

them). 

 
4. Homogeneity test. The question is, if the 

distributions of two (or more) variables are 

identical. 

Problem 1: 

One of the conditions for the continuous sales 

of a medication is maintaining a 6-mg content 

of the active ingredient. In a quality control 
experiment the measured data of some 

arbitrarily chosen tablets were (in mg): 6.05, 

5.95, 5.75, 5.9, 5.95, 6.05. Should the sales of 
the medication be banned based on the 

different content of the active ingredient? 

  

Comment 9.  

Possible decisions of the jury: 

 

 

The fact 

The sentence 

acquitted sentenced 

not guilty right wrong 

guilty wrong right 

 
 

 hypothesis testing 

 Hypothesenprüfung 

 hipotézisvizsgálat 
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knew the population (active ingredient content of each (!) tablet), or, equivalently, 

its distribution, then we would simply need to compare the expected value of the 

known distribution of the population (  ) with the specified 6 mg value. In this 

case, further consideration is not required. We simply conclude that if  = 6, then 

we accept, but if  ≠ 6, then we reject the initial hypothesis. With this step we just 

quantified the initial hypothesis, because  = 6 is equivalent to the statement: "The 

further sales of the medication shoud not be banned, because the active ingredient 

content does not differ from the specified value". We should mention that in 

practice it is also important that the tablets contain identical amounts of the active 

ingredient, therefore the standard deviation should be examined as well. 

 

As this ideal case never really happens, the situation is more complicated. We 

know that the well-chosen confidence interval calculated from a sample includes 

the expected value only with a given certainty. Thus, first we choose the 

"necessary" certainty (i.e., the confidence level), and then we check if the 

corresponding confidence interval includes the value 6. If yes, we accept, but if 

not, reject the initial hypothesis. In the end the decision is based on the sample at 

a previously chosen and fixed confidence level. 
 

In a different approach, we may assume that there exists a population with an 

expected value  = 6, and the question is whether the arbitrarily chosen sample is 

from this population, or from another one with a different expected value,  ≠ 6 

(see Fig. 17)? 
 

Let us choose the confidence level to be 95 %. This means that from 100 arbitrarily 

chosen similar samples it may happen only 5 times that the corresponding 

confidence interval does not include 6. We know that this interval can be 

calculated from the formula xskx   and that for large samples k ≈ 2. In our case 

(as the sample is small) k is not yet determined, but we will solve this problem 

soon. If we use k = 2, based on the data (see Problem 1.) the confidence interval is 

between 6.03 and 5.85. As this includes 6, we accept the initial hypothesis. 
 

The result means that the experiment did not provide enough evidence for banning 

the further sales of the medication. Therefore, the "further sales (provided that this 

was the only criterion) cannot be denied", because the active ingredient content 

does not differ from the specified value - it is not outside the confidence interval. 
 

A similar procedure is used during the discussion of the statistical tests, which 

follows soon, but for a better understanding we have to explain an important 

mathematical tool first. 

 

TRANSFORMATION OF THE VARIABLE AND THE DISTRIBUTION OF 

THE NEW VARIABLE 

 

Transformation of data was already mentioned in the GRAPHICAL 

REPRESENTATION section, where our goal was to "connect" measured 

datapoints with a straight line. Here, we will discuss the question of transformation 

in detail. 

 

When we obtain the data after performing some specified mathematical operations, 

the result is basically a new variable, because from different initial data we get a 

different result. This type of conversion is called in general a transformation. 

Among the simplest transformations we can mention the addition of a constant or 

the multiplication with a constant, but calculating the mean or the empirical 

standard deviation are transformations as well (see Comment 10). 

 

Let us take an element x (the variable) of a normally-distributed population 

N (  ), and carry out the transformation x* = (x – ) /. In other words, this 

operation is carried out on every element of the population. 

 

The question is what the distribution of the new variable x* is like. As a first step, 

all the elements are shifted by the expected value, which yields the N (0,  ) 

normal distribution. As a second step, the differences from 0 are divided by 

(shrinking), which yields the N (0, 1) standard normal distribution (see Fig. 18). 

This transformation has an important practical advantage, as any normally-

 
 

Fig. 17. Possibilities of the origin of the 

chosen sample. Values are in mg units. 

  

Comment 10. 

Transformations: 

 

Transformation of a variable in fact means 
that its value is expressed on a different scale; 

to every original value a new value is 

assigned on that new scale. 
 

The conversion of a physical quantity from 

one system of units to another is also a 
transformation. E.g.: energy [eV]∙1.6∙10-19 = 

energy [J]. 

 
The goal and sense of the transformation is 

that such statistical procedures can be applied 

on the transformed variable that are not 
possible on the original. However, the 

conclusions will be valid for the initial 

variable as well. 
 

By using a normalizing transformation, a 

normally-distributed variable can be obtained 
from one that is not of normal distribution.   

 

Categorizing transformations convert 
variables of continuous distribution into 

ordinal or nominal variables. This is useful in 

cases when the examined phenomenon 
changes qualitatively in parallel with the 

change of a continuous quantitative 

parameter. 
This type of variable is, for example, the age, 

for which we can apply the following 

transformation in order to get a two-value 
nominal, so-called binary variable from a 

continuous variable: 

age < 18 years → child (0) 
age ≥ 18 years → adult (1). 

 

Rank transformations convert values or 
ordinal variables. The elements of the sample 

are sorted ascending, and the ranks (rank 

numbers in the list) are used instead of 
original values. Several non-parametric 

statistical procedures are based on this rank 

transformation. (See chapter of EXAMPLES 
FROM THE FIELD OF MEDICAL 

STATISTICS) 
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distributed variable can be transformed into one with standard normal distribution, 

which makes standardized data processing possible. 

 

 
 

Fig. 18. Transformation of a normal distribution of general position and width into 

standard normal distribution (N() → N(0,1)) 

 

Now, we would like to use the "same" transformation in a case when  is not 

known. Therefore, we will use its estimated value, the empirical standard deviation 

(s) calculated from the sample of n elements. The variable obtained from this 

transformation has a similar distribution but not exactly the same as that of 

N (0, 1). The new distribution is called Student's t-distribution. For n–1 degrees 

of freedom t = (x–)
 
/s (see Fig. 19). It is not surprising that this distribution 

depends on n, as in the transformation we have a parameter s that depends on n. 

Further properties of the distribution will be discussed in the next section. 

 

Different transformations lead to different distributions. Let us see another 

example: if we have n variables distributed as N (0, 1) and we sum the squares of  

these  variables,  then the  distribution  of  the  new  variable  is  called  a  χ
2
-

distribution of n degrees of freedom (see Fig. 20). Naturally, this variable cannot 

have a negative value. 

 

STATISTICAL TESTS 
 

Although the hypothesis test can be performed as it was shown before (although 

we did not yet specify the value of k), we will rather use statistical tests for their 

simplicity. 

 

There are many different types of statistical tests depending on the hypothesis to 

be tested, the conditions of the application and the way of realization of the 

method, but all of them have the same basic logic. 

 

Our initial assumption is that parameters estimated from a sample have some 

kind of distribution; hence if we choose another sample, the estimated parameters 

will be different. The exact shape of the distribution depends  

 first on the distribution of the initial variable,  

 second on the parameter or statistical characteristic (it can be the 

correlation coefficient r as well) considered, and  

 third on the number of elements in the sample, or more exactly the degree 

of freedom. 

 

For the sake of simplicity, instead of many possible distributions we will use only a 

relatively small number of their standardized versions. To achieve this, we will 

always transform the examined estimated parameter or statistical characteristics 

corresponding to the given standardized distribution to the desired shape (see the 

previous section, like N () → N (0, 1)). 

 

The simplest and most often used statistical tests are the t-tests and the χ
2
-tests. A 

standardized theoretical distribution belongs to both tests, the t- and the χ
2
-

distributions, respectively. These are in fact families of distributions as the degree 

of freedom – as a free parameter – affects the shape of the particular distribution. 

 

Let's get back to the previous example (Problem 1) and see what the hypothesis 

 
 

Fig. 20. The  χ
2
-distribution of 6 degrees 

of freedom 

 

 
 

Fig. 19. Student's t distribution for 4 

degrees of freedom. The curve 

resembles the N(0,1) distribution, but 

depending on the degree of freedom it 

differs more or less. 

 

 Student’s distribution of t 

 Student oder t-Verteilung 

 Student-, vagy t-eloszlás 
 

 χ2-distribution 

 χ2-Verteilung 

 χ2-eloszlás 
 

 statistical test 

 statistischer Test 

 statisztikai próba 

 

William S. Gosset (1876-1937), a famous 
English statistician wrote under the 

pseudonym of "Student". In the course of his 

work on small-sample quality control for the 
Guiness Brewery in England, Sudent 

realized, that what we have called t was not 

distributed precisely as normally distributed 

x*, and provided a way to the solution. As a 

result, we know the proper distribution of this 

statistics. In honor of Gosset's contribution, 
the resulting family of distributions is known 

as Student's distribution or Student's t-

distribution. 
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testing means in the "language" of the tests. The question to be answered does not 

change: should the sales of a medication be banned because the active ingredient 

content has changed, or, more simply, does the active ingredient content of the 

tablets differ from that specified (c.f., "is the accused guilty")? 

 

The initial hypothesis that needs to be tested and about which the decision will be 

made is called the null hypothesis (the reason is discussed later): the further sales 

of the medication cannot be banned, because the active ingredient content does 

not differ from the specified value ("presumption of innocence", not guilty). 

 

Let us quantify the null hypothesis: the sample of given mean ( 94.5x ) was 

chosen from the population of expected value 60  , and not from the one with 

6 . As we do not know the expected value  of the population, only the 

mean of the sample, as a matter of fact 5.94 ≈ 6 and we could say that the 

difference is "not real" but a result of random sampling variation. Thus,  = 0 and 

0x , or, in other words 00    and 00  x . The null hypothesis, which 

is usually denoted by H0 can be formulated as 00  , but this cannot be tested 

directly. Therefore, only the 00  x  statement remains, although this statement 

might not be satisfied because of random sampling. 

 

An alternative hypothesis H1 must also be specified. H1 is valid if the null 

hypothesis is rejected. Our first thought might be that defining H1 is completely 

useless, because formulating a statement opposite to H0 is straightforward. That is, 

if H0: ( 00  ), then H1: ( 00  ). This statement is true in most of the 

cases, hence H0 is rejected both if 00   and if 00  . This is called 

the two-tailed test (and a non-directional alternative hypothesis). 

 

On some occasions however, we are interested only in one direction of the opposite 

statement. For example, if we examine the effectiveness of medications such as 

antihypertensive or antipyretic drugs, then only a reduction of the expected value 

corresponds to effectiveness. We assume that the elevation of blood pressure or 

body temperature occurs only by chance. The null hypothesis remains the same 

H0: ( 00  ), but the alternative hypothesis is formulated as H1: ( 00  ), 

hence H0 is rejected only if 00  . This is called the one-tailed test (and a 

directional alternative hypothesis). 

 

If the error (result of the random sampling) is large enough, then the formulation 

of the null hypothesis as 00  x  is nearly true and acceptable. However, if the 

error is small, then we cannot be certain, and the difference might be "real". In 

order to make a decision the measurable difference 0x  and the standard 

error (characteristic of the random variations, standard deviation of the sampling 

distribution of means, xs ), need to be compared. In the previous section we have 

seen that the variable x of N (   ) distribution can be transformed by formula 

t = (x–)/s into a Student's t-distribution of n–1 degrees of freedom. Now we 

suppose that if we use instead of the variable and its theoretical standard deviation 

the mean and its empirical standard deviation in the transformation formula, we 

will get the same result, thus 

xs

x
t 0 .                                                 (19) 

In this case the use of the yet-to-be described t-test seems to be the best for this 

purpose. 

 

ABOUT THE t-TESTS IN GENERAL 

 

Fig. 21 shows the Student's t distribution again, but now for different values (2, 4 

and ∞) of the degrees of freedom. Note especially that the expected value of the 

distribution is always 0 (t = 0) and its shape resembles the standard normal 

distribution (N (1, 0)) as mentioned earlier. Finally, for infinitely large samples 

(where degrees of freedom approach infinity) the t distribution and the normal 

curve are identical. You can see that the value t = 0 corresponds to the recently 

 t-test 

 t-Test 

 t-próba 
 

 null hypothesis 

 Nullhypothese 

 nullhipotézis 
 

 χ2-test 

 χ2-Test 

 χ2-próba 
 

 alternative hypothesis 

 Alternativhypothese 

 alternatív hipotézis 
 

 two-tailed test 

 zweiseitiger Test 

 kétoldalú próba 
 

 one-tailed test 

 einseitiger Test 

 egyoldalú próba 
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formulated null hypothesis ( 00  x ), but the ts value that is calculated from 

the sample characterizes whether the data stand for rejecting or accepting the null 

hypothesis, thus it is the measure of the "strength" of the data (evidences). By 

analogy of the judicial example, the goal of the prosecution is to increase t, and 

that of the defense is to decrease it.) 

 

Distributions of several statistical characteristics can be converted by specific 

transformations into the Student's t distribution. Change, deviation, difference 

and correlation of variables are always measured by a parameter. This parameter 

is estimated by a statistical property of the sample, and its standardized form 

always yields a ts value. 

 

The calculated ts value should be zero in principle if there is no change, no 

deviation, no difference or no correlation. This is the reason why the “no” 

answer to the original yes/no question is called the null hypothesis. The null 

hypothesis has a unique role in hypothesis testing. Irrespective of the statement to 

be confirmed by the study, during the test the validity of the null hypothesis is 

always assumed. In the end this statement is either accepted or rejected, and the 

answer to the initial question is negative or positive, respectively. 

 

It is easy to find the reason for the above logic. In case of a positive answer to the 

initial question, the number of possible answers can be infinitely large, but only a 

single value of the parameter, the zero corresponds to the negative answer. Fixing 

the parameter makes the distribution of the calculated statistical parameter 

unambiguous, thus one possible distribution (the Student's t-distribution) 

corresponds to the null hypothesis, and many distributions to the opposite 

statement. However, we should emphasize, that the calculated ts value can be zero 

only theoretically. In reality, after performing all the calculations we usually get a 

nonzero ts value. We have to make our decisions based on the relationship of the ts 

value and the Student's t distribution asumed by the hypothesis. 

 

We would have an easy job in decision making if the Student's t distribution 

spanned only a given range, let's say from tbegin to tend. It would be enough to check 

whether the ts value is in that interval or not. Inside the interval the null hypothesis 

would   be accepted,  and outside  it  would  be  rejected.   However,  the   

Student's   t-distribution, just like the Gaussian distribution, spans from –∞ to +∞, 

therefore a finite range that enables us to make an unambiguous decision does not 

exist. 

 

  
 

Fig. 22. Regions of acceptance and rejection in case of a two-tailed t-test. 

 

Because we must define an interval in order to make a decision, let us cut off the 

"tails" of the Student's t distribution at values far from 0, starting at a critical value 

tcrit. (Exactly how we do this will be discussed later.) We may then pose the 

question whether the calculated ts value is within or outside this interval (see 

Figs. 22 and 23). If it falls within the interval (e.g. ts1), then the null hypothesis 

is accepted. If it is beyond the boundaries (e.g. ts2), then the null hypothesis is 

rejected, and we say that the calculated value of ts is significantly different from 

0, or shortly just: it is significant (see Comment 11). The part that was cut off is 

called region of rejection and the remaining interval is the region of acceptance. 

 

Regardless of what was our decision, acceptance or rejection of the null 

  
  

Fig. 21. The Student's t-distribution for 

three different degrees of freedom. 

 

Comment 11. 

The term "significant difference" never means 

absolute certainty, just as the term "not 
significant" does not mean that there is 

positively no difference. There may be real but 

very small differences, which are smaller than 
the error of the measurement, the experimental 

method or the equipment in use. Importantly, 

the significance analysis can never reveal the 
reason of the difference. 
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hypothesis, there is always a chance that our decision is not right. 

 

The error of rejecting a null hypothesis when it is really true is known as type I 

error. In the judicial analogy it corresponds to the situation, when the verdict is 

“guilty”, but in fact the accused is innocent. Type I error is made if the calculated ts 

value in fact belongs to the Student's t distribution (around 0), but because the tails 

of the distribution were cut off it falls into the region of rejection and the null 

hypothesis is rejected. The probability of type I error can be given exactly, and 

it is equal to the area that was cut off (see Fig. 22, Fig. 23 and Fig. 9). 

 

 
 

Fig. 23. Regions of acceptance and rejection in case of one-tailed t-tests. 

 

The probability of the type I error is called the probability level of the statistical 

decision (
 
p-value), or, rarely, it is called the level of error. In practice we choose 

explicitly in advance a probability  of the values that are cut off (which 

corresponds to the area) rather than the distance from zero. This probability is 

referred as the level of significance, because it indicates unambiguously which 

t values are significant and which are not. 

 

Another kind of error is made if a false null hypothesis (about which we do not 

really know whether it is false) is accepted. This error is called the type II error. 

In the judicial analogy type II error is made if a guilty accused is acquitted. This 

situation happens if the calculated ts value "belongs to" an actual sampling 

distribution centered on a  different  expected  value  t* ≠ 0,  and  not  to  the  

hypothesized  Student's   t-distribution centered on 0, although we think (wrongly) 

that it "belongs to" the latter. 

 

The probability ( p = )  of this type of error could in principle be measured by 

calculating the corresponding area of the t* distribution of expected value. Since 

this distribution is not known, therefore the probability of the type II error 

cannot be determined (see Fig. 24). There are some methods for the estimation of 

this error, however. 

 

It is important to emphasize that  makes sense only when the hypothesis is 

rejected and  when the hypothesis is accepted. At the same time it is obvious that 

by decreasing the probability of one type of error, that of the other increases. 

Because only the probability of the type I error can be fixed, a useful compromise 

should be made. 

 

 significant  

 signifikant 

 szignifikáns 

 

 critical region, region of rejection 

 kritischer Bereich (Ablehnungsbereich) 

 kritikus tartomány 
 

 significance level 

 Signifikanzniveau 

 szignifikancia szint 
 

 acceptance region 

 Annahmenbereich 

 elfogadási tartomány 
 

 type I error 

 Fehler 1. Art 

 elsőfajú hiba 
 

 type II error 

 Fehler 2. Art 

 másodfajú hiba 
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Fig. 24. Type I and type II error. 

 

The usual level of significance in medical and biological studies is (p = )  = 0.05 

(that is, 5 %). It means that, on average, in five out of 100 cases the null hypothesis 

is rejected although in reality it is true. Often even the 5% probability of making 

wrong decisions is not allowed. In these cases the significance level can be lowered 

to  = 0.01,  = 0.001, or even further. Note, however the probability of making a 

type II error increases in the meantime. 

 

Let us now see how to perform a t-test in practice. For this we need to know that 

although the Student's t distribution could be given by a complicated formula, it is 

simpler if its values are listed in tables (just like for the trigonometric functions). 

However, there is a substantial difference between the tables of the Student's t 

distribution and that of the sine function. In case of the sine function, for every x 

the f (x) = sin x value is given. The tables of the Student's t distribution have a 

special structure for an easier use (see Fig. 25 and Table 7). 

 

First of all, the Student's t-distribution table contains many distributions 

corresponding to different degrees of freedom. Degrees of freedom are listed in 

the left column, and in every corresponding row there are data for the particular 

distribution. These values are not function values but t values; that is, the special 

values of the independent variable. 

 

In order to explain the meaning of individual numbers of the table, let us compare 

the graph of the Student's t-distribution for 5 degrees of freedom with the 

distribution in the 5th row of the table. The table has two header rows, with 

probabilities p (for one- and two-tailed tests): these correspond to the area under 

the curve (in one and two tails) on the graph. The table gives the absolute value of 

t, at which we have to cut off one or two (symmetrical) tails of the distribution to 

make the cut area equal to the p-value in the header. In other words, the 

significance levels that we can choose in advance are listed in the headers of the 

table and the corresponding critical values tcrit can be found in the row of the given 

degrees of freedom. 

 

To make an unambiguous decision the order of the steps of the method is very 

important. The level of significance of our future decision is stated first and the 

comparison with the calculated value is done afterwards (see Comment 12). 

Comment 12. 

Nowadays, in the world of computers the table 

of Student's t distribution is rarely used, because 
the computer can calculate the p-value for any 

critical value. (In most of the statistical 

programs the t value is not even calculated.) 
Hence the result of the test is a p-value, and the 

decision has to be made based on this. If p is 

small enough (smaller than the level of 

significance stated in advance), then H0 is 

rejected (and H1 becomes valid), as the 

probability of rejecting a true hypothesis is 
small. (In other words, the probability that only 

the random sampling variation of data causes a 

value so different from 0 is small.) If p is large, 

then H0 is accepted for the same reason. (It is 

our decision whether the p-value is large or 
small.) 
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Fig. 25. Student's t-distribution. Critical values and probabilities that 

correspond to the one-tailed t-test. 

 

 

Table 7. Critical values and probabilities of the Student's t distribution for one- 

and two-tailed tests. 

 

As a next step, the calculated ts value and the critical value tcrit obtained from the 

table are compared. If ts ≤ tcrit then the null hypothesis is accepted; if  ts > tcrit, 

then the null hypothesis is rejected, and we say that the difference is significant 

at the given level of significance. 

 

APPLICATION OF THE t-TEST, SOLUTION TO THE PROBLEM 1 

 

We have already formulated two different forms of the null hypothesis: 

 

1. The further sales of the medication should not be banned, because the active 

ingredient content does not differ from the specified value. 

2. H0:  – 0 = 0, ( 00  x ). 

The alternative hypothesis was formulated as H1:  – 0 ≠ 0. This is a non-

directional alternative hypothesis, thus we will use the two-tailed t-test. Next steps 

are: 

 

- Calculate the t-value from the sample: ts = 1.28 

- Select the level of significance:  = 0.05 

- Determine the degree of freedom: n–1 = 5 

- Identify the critical value from the table: tcrit = 2.571 

- As 1.28 < 2.571 (thus ts< tcrit), we accept the null hypothesis. 

- Conclusion: The further sales of the medication should not be banned, because 

the active ingredient content does not differ from the specified value. 

 

More precisely it means that our data do not provide enough evidence (the 

parameter ts, measuring the strength of the evidences is not high enough) for the 

rejection of the null hypothesis and therefore for the banning of the sales. 

p (one-tailed test) 

 0.45 0.35 0.25 0.15 0.10 0.05 0.025 0.01 0.005 

p (two-tailed test)   

degree of 

freedom 

0.90 0.70 0.50 0,30 0.20 0.10 0.05 0.02 0.01  

1 0.158 0.510 1.000 1.963 3.078 6.314 12.706 31.821 63.657 

2 0.142 0.445 0.816 1.386 1.886 2.920 4.303 6.965 9.925 

3 0.l37 0.424 0.765 1.250 1.638 2.35 3.182 4.541 5.841 

4 0.134 0.414 0.741 1.190 1.533 2.132 2.776 3.74 4.604 

5 0.132 0.408 0.727 1.156 1.476 2.015 2.571 3.365 4.032 

Comment 13. 

t-test for a single sample 

(Detailed solution for a problem: DOES THE 
PULSE RATE CHANGE after holding ones 

breath for one minute?) 

 
H0: the pulse rate does not change, 

that is 0 x , where  0 = 0 or 0x , 

where x  stands for the mean of the changes. 

H1: x  – 0 ≠ 0, (two-tailed test). 

The first two columns of the table contain the 

measured pulse rate data before (xb) and after 

(xa) 1 minute of holding the breath, for n = 6 
participants. The corresponding pulse rate 

differences (changes) and their squares are 

listed in the third and fourth columns (the 

squares are needed for the calculation of 

mean and the standard deviation). 

xb xa 
ix'  xa- xb 

2'ix  

69 71 2 4 

60 63 3 9 

68 70 2 4 

75 76 1 1 

71 70 -1 1 

66 69 3 9 

 
 ix' = 10  2'ix = 28 

Calculate the mean of the differences: 

 
67.1

6

10
' 




n

xx
x ba  

Find the empirical standard deviation of the 

differences from (4) and (6) 

 

51.1
16

6

10
28

1

'
'

'

22
2



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Calculate the t-value of the sample using (20) 

and substituting  = 0: 

72.26
51.1

67.1

'

''

'
s  n

s

x

s

x
t

x

 

Choose the level of significance as 

 = 0.05  5%. 

The degree of freedom: (n–1)  =  (6 –1)  =  5. 
Find the critical ts-value from the Table 7, in 

the p = 0.05 column of the two-tailed test and 
row that corresponds to the degrees of 

freedom of 5: 

tcrit = 2.571.  

Compare: ts = 2.72 > tcrit = 2.571, 

that means ts falls in the region of rejection, 

thus the null hypothesis is rejected. The 
conclusion is that the one-minute holding of 

breath caused a significant pulse rate change 

(at a level of significance of 5 %). 
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Further comments: As we accepted the null hypothesis, we would rather be 

interested in type II error, the value of , the probability, that we accepted a false 

hypothesis. Earlier we said that it is not possible to determine the  The only 

thing we can do is to increase the value of  (which implies the decrease of ) until 

ts = tcrit. Now, if we choose only a bit larger critical value, the null hypothesis will 

still be accepted, but the corresponding  is much greater than 0.05, that is p = 

0.26. As we accepted the null hypothesis, it does not make much sense by itself, 

but it means that the , probability of the Type II error decreased. Hence in such 

cases it is reasonable to give this  value. 

 

Conditions for applying the t-test are: 

 

1. the variable is normally distributed, 

2. the elements of the sample are independent, 

3. in case of two samples their standard deviations are similar "enough". 

 

The first and third conditions are not very strict, but the second is. The t-test is used 

mostly to test a mean and difference of means, but it can be applied for testing the 

correlation coefficient as well. 

 

Now let us see the most common variations of the t-tests, and the corresponding 

formulas for calculating ts values. 

 

t-TEST FOR A SINGLE SAMPLE 

 

We have formulated earlier a question as: DOES THE PULSE RATE CHANGE 

after holding one’s breath for one minute (see Comment 13)? 

 

Formulated in general: Does the expected value of the population change as a 

result of an intervention? Or, in other words: Does the intervention have any 

effect? Formally: Does the expected value of the population distribution differ 

from a previously given value? 

 

Calculation of the ts:                           n
s

x

s

x
t

x

s
00  




                           (20) 

Degrees of freedom: n–1 

 

t-TEST FOR TWO SAMPLES 

 

We have formulated earlier a question as: IS THERE A DIFFERENCE between 

the pulse rates of girls and boys (see Comment 14)? 

 

Formulated in general: Do the expected values of two independent populations 

differ? 

Calculation of the ts:  
21

2121

nn

nn

s

xx
ts








, where  

221

21






nn

QQ
s           (21) 

Degrees of freedom: n1+ n2 –2, 

 

where Q is equivalent to the notation in formula (6) calculated for the first and 

second samples. (Note that this expression is very similar to equation (20).) 

 

t-TEST FOR CORRELATION 

 

We have formulated earlier a question as: DOES the accommodation power of 

the eye DEPEND on the age of the person? 

 

Formulated in general: taking into account the correlation coefficient and the 

number of data, can we say about the two quantities that they depend on each 

other (based on their changes)? 

Calculation of ts:                         21

2

r

n
rts




 ,  (22) 

Degrees of freedom: n –2, 

where n is the number of measured data (x,  y pairs), r is the correlation coefficient 

Comment 14. 

t-test for two samples (Detailed solution for a 

problem: IS THERE A DIFFERENCE 
between the pulse rate of girls and boys?) 

 H0: there is no difference between the 

pulse rate of girls and boys, that is  

          girls –  boys = 0. 

 H1:  girls –  boys ≠ 0, (two-tailed test). 

The table below contains measured pulse rate 
data of 6 girls (xgirls) and 9 boys (xboys). 

 

xgirls xboys 

74 71 

87 63 

62 70 

79 74 

71 71 

77 69 

 82 

 56 

 78 

girlsx 75 boysx 70 

 
From the calculated means it seems that girls 

have higher pulse rates. Is this difference 

significant or just a result of a random 
sampling? 

Let us suppose that every condition of the t-

test is fulfilled (even the one about identical 
standard deviations, which can be checked by 

calculation). 

We calculate by computer the p-value for our 
data, which is p = 0.296. (Parameters of the t-

test function of the program must be set to 

two-tailed test, and equal standard deviations 
are taken into account.) 

The p-value is rather large, much larger than 

0.05, the usual level of significance, hence 
the null hypothesis cannot be rejected. If we 

rejected the null hypothesis, then the 

probability making a type I error, that is, of 

rejecting a true hypothesis would be almost 

30 %. Therefore, we accept the null 

hypothesis H0, and our conclusion is that the 
difference between the two samples is not 

significant. Thus, there is no significant 

difference between the pulse rate of girls and 

boys. 
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introduced by formula (19). The steps of the further part of the process are the 

same as in the previous examples (see Comments 13 and 14). 

 

The discussed variations of the t-test are summarized in the Table 8. Which form 

of the test to be used is determined by the initial question. Knowing the experiment 

and the available data help us to pose the question unambiguously. 

 

 

Table 8. Summary of the most frequently used t-tests. 

 

2
-TESTS (CHI SQUARE TESTS) 

 

Naturally, t-tests can be applied only for numerical (continuous) variables. What 

shall we do with categorical data? In these cases we make inferences based on the 

frequencies of data falling into categories. For this we will use the so called Chi 

square (2
) tests. 

 

The question is: is the frequency of occurrence of an attribute (symptom) different 

for two different populations? For example, is the frequency of pulmonary cancer 

higher among smoker than among non-smoker patients having lung diseases (see 

Comment 15)? 

 
Fig. 26. The 

2
-distribution for different degrees of freedom, and some 

critical values of the  
2
-distribution for 1 degree of freedom. 

 

Measured data are organized in the form of a table, where the two populations are 

indicated as A and B. Total number of n people was examined. The number of 

 t-test for a single sample t-test for two samples t-test for correlation 

a typical question in the field of 

medicine 

Is the treatment effective? (Is 

there a change in the supposed 

direction?) 

Is there a difference between the 

effects of the two treatments? 

Is there a correlation 

between two quantities? 

the corresponding null 

hypothesis 

The treatment is not effective. The two treatments have the same 

effect. 

There is no correlation. 

the question in general form Does the sample belong to a 

distribution of 0 expected value? 

Do the two samples belong to the 

same distribution? 

Is there a correlation 

between the two 

(continuous) variables, even 

if r is small? 

the exact form of the null 

hypothesis 
00    021    There is no correlation 

between the two variables. 

the experiment One physical quantity is measured 

on one sample. 

The same physical quantity is 

measured on two independent 

samples. 

Two physical quantities are 

measured on the same 

sample. 

t 
xs

x
t 0  see (21) 21

2

r

n
rt




  

degree of freedom n – 1 n1 + n2 – 2 n – 2 

Comment 15. 

Chi square (2) test for two samples 

Detailed solution for a problem: Is the 
frequency of pulmonary cancer higher among 

smoker than among non-smoker patients? 
 

• H0: The frequency of pulmonary cancer is 

the same among smoker and among non-

smoker patients, thus 2 ≈ 0. 

• H1: frequency of pulmonary cancer is 
different among smoker and among non-

smoker patients, thus 2 ≠ 0. 

The following table summarizes a study done 
in the Pulmonology Clinic. The frequencies 

of pulmonary cancer cases in the two 

examined groups (and the subtotals, n = 61) 
are shown. 
 

 
Pulmonary 

cancer 

No 

cancer  
 

Smoker  14 13 27 

Non- 

smoker 
9 25 34 

 23 38 61 
 

As 23∙27 = 621 > 5∙61 = 305, the test can be 

performed. 

From the formula (23) we get the s
2-value: 

13.4
27343823

)1392514(61 2
2 




m  

We can see that s
2 ≠ 0, but is this a 

significant difference, or just a result of 

random sampling? 

Let us choose the level of significance  

 = 0.05 → 5 %. 

the degree of freedom is :1. 

Find the critical value in the p = 0.05 column 

and first (degree of freedom 1) row of the 2-

distribution table (see Fig. 26.): 

crit
2 = 3.84 

Because: s
2 = 4.13 > crit

2 = 3.84,  

the s
2 value falls in the region of rejection, 

thus our decision is, that the null hypothesis 

is rejected. The conclusion is that the 

observed difference between the occurrence 

of pulmonary cancer among smokers and 
non-smokers is significant (at 5 % level of 

significance). 
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those  who have the examined attribute is  a  and  c,  and those  who  do  not  is b 

and d. 

 

The only condition of this test is that the observed frequencies are high enough, or 

in other words the product of two smallest subtotals has to be greater than 5 n. If 

this condition is not fulfilled, then the so called Fisher's exact test can be applied 

(not discussed). 

 

 

Table 9. 

 

Null hypothesis: There is no difference in the frequency of the examined attribute 

in the two groups, it is the same in the two samples, thus the s
2
-value calculated 

by the formula (23) is zero, or not significantly different from zero. 

 

Calculation of the s
2
-value: 

 
    dbcadcba

bcadn
s






2
2 .                          (23) 

Degree of freedom: 1. 

 

From the same ratio of frequencies of the examined attribute, thus from 
d

c

b

a
  

follows, that ad – bc = 0, thus the  
2
 = 0 fulfils the null hypothesis. Whether or not 

the calculated s
2 
-value is significant, we decide based on the  

2 
-distribution table 

for degree of freedom 1. 

 

χ
2
-TESTS (CHI - SQUARE TESTS) IN GENERAL 

 

In the previous section we discussed only the simplest but often applicable version 

of the χ
2
-tests (2 x 2 table). Both the number of populations and the examined 

attributes may be larger. 

In general: we have an (l x m) table, called the contingency table, where l is the 

number of rows and m is the number of columns. It can be used for independence 

tests. In case of independent variables, the relative frequencies are identical. 

 

H0: independence of the row and column variables, expected value of χ
2
 is 0. 

 

Calculation of the value of  χ
2
:  

 
 














 


E

EO
2

2 , (24) 

where O is the observed frequency, E is the expected frequency, and the degree of 

freedom is (l-1)(m-1). 

 

Calculation of the expected frequencies. Besides the contingency table of the 

observed frequencies, a new contingency table has to be calculated containing the 

frequencies expected if H0 is true.   
The corresponding subtotals of rows and columns and grand total are equal in the 

two tables. If H0 is true, then the frequency expected in any particular cell of the 

calculated contingency table is equal to the product of the subtotal of the given row 

with subtotal of the given column divided by the grand total of the sample 

(rowsubtotal·columnsubtotal/grandtotal) (see Comment 16). 

 The examined attribute  

total is present is not present 

group A a b a+b 

group B c d c+d 

total a+c b+d n 

Comment 16. 

(The general solution for the problem in 

Comment 15.) 

Question: Is the frequency of pulmonary 
cancer different among smoker than among 

nonsmoker patients? 

 
Let us formulate again the statistical 

hypotheses. 

H0: The frequency of pulmonary cancer is the 
same among smoker and nonsmoker patients, 

thus χ2 = 0.   

H1: The frequency of pulmonary cancer is 
different among smoker and nonsmoker 

patients, thus χ2 ≠ 0.   

 
Using a proper statistical software we can 

easily get the solution. The contingency table 

of observed frequencies was already 
constructed in the previous comment.  

 

Observed contingency table: 

 
Pulmonary 

cancer 

No 

cancer 
 

ssmmookkeerr  14 13 27 

nnoonnssmmookkeerr  9 25 34 

 23 38 61 

 

After this, we construct the contingency table 
of the expected frequencies under the 

condition H0, where the corresponding 

subtotals of rows and columns and grand total 
are equal in the two tables. Relative 

frequencies have to be equal in the expected 

and observed tables, thus  

d

c

b

a
  

Expected contingency table: 

 
Pulmonary 

cancer 
No 

cancer 
 

ssmmookkeerr  10.18 16.82 27 

nnoonnssmmookkeerr 12.82 21.18 34 

 23 38 61 

 

The χ2-test is included in most modern 

statistical packages. By using such a software 
one can select the chi-square function and 

assign the two tables as arguments of the 

function. The computer calculates the 
probability p based on the data, in this case 

p = 0.042. 

As p value is smaller that the usual 
significance level (0.05), the null hypothesis 

is rejected. The alternative hypothesis H1 is 

accepted as the conclusion, which means that 
the frequency of pulmonary cancer is 

different among smoker and among 

nonsmoker patients at significance level 

smaller than 5 %. 
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EXAMPLES FROM THE FIELD OF MEDICAL STATISTICS 
 

It occurs often in medical practice that the studied variable is a continuous 

quantity, but the conditions of applicability of the t-tests are violated (for example, 

the variable does not have normal distribution, see page 27). In such a situation we 

can usually apply a t-test, but our conclusions will be less valid.  
 

We have already discussed one possible solution to the problem, the transformation 

of the variable. If this is not possible, then the so-called non-parametric methods 

can be used. (The name indicates that if the type of the distribution of the variable 

is unknown, the parameters of the distribution are also unknown.) The most widely 

used non-parametric methods assign ranks to the measured scores according to 

defined rules. The test then uses the rank numbers instead of the original values. 

Ranks are usually integer numbers that correspond to the place of the original 

value in the measured series. Sometimes it occurs even in the case of continuous 

variables that the measurement contains identical scores which lead to ties in rank. 

A simple and satisfactory way to deal with ties is to assign each of the tied scores 

the mean of the ranks that would be available to them. For example, if the first two 

scores are the same, then instead of ranks 1; 2; 3; … we will assign ranks 1.5;  1.5; 

3;  ...    
 

Non-parametric tests do not specify restrictive conditions on the variables. 

The only requirement is that the variable is ordinal. One could ask then why not 

apply these methods in all cases then? It is possible to show that for the same 

dataset, if applicable, the t-tests allow to make decisions at a better significance 

level. This is why first it should always be determined whether or not a t-test can 

be performed.  

 

MANN-WHITNEY U-TEST 
 

The Mann-Whitney U-test is an alternative to the two-sample t-test. Let us, for 

example, examine the question whether aspirin is an effective pain killer for 

headaches? We must emphasize that this question can be answered only after an 

extensive clinical investigation followed by detailed statistical analysis. Here we 

show, as an example, only one step of this procedure.  
 

H0: The aspirin does not effectively reduce headache. 
 

The strength of a headache cannot be measured directly, therefore we make the 

following experiment. Let us sort people who suffer from headache into two 

groups. The individuals in the first group (n1) get aspirin. Those in the second 

group (n2), the control, receive so-called placebo, a drug without any effective 

ingredient. Of course the participants do not know which group they belong to; 

they all believe they received aspirin. After some time they are asked to scale from 

1 to 10 the effectiveness of the pain killer so that 0 refers no effect (headache same 

as before), and 10 means that the drug was fully effective (headache is gone 

completely). The statistical analysis is based on these data. This dataset 

corresponds to categories of an ordinal variable (better, little better, etc.), that were 

quantified for easier calculation, thus the distribution is unknown, and the 

parameters of the distribution are also unknown. For this reason a non-parametric 

test is used instead of the t-test. 
 

All measured scores from the two groups are combined and ranked from lowest to 

highest scores, regardless which group they originate from. If the null hypothesis is 

true, then the scores from the two groups are randomly placed. The sum of the 

ranks is calculated in the first and second group as T1 and T2, respectively. The sum 

of all ranks (that is sum of integers from 1 to n1+n2) can be calculated as 

(n1+n2+1)∙(n1+n2)/2, that equals obviously T1+T2. The “average” rank is therefore 

(n1+n2+1)/2. Assuming that null hypothesis is true, T1 ≈ n1∙(n1+n2+1)/2 and T2 ≈ 

n2∙(n1+n2+1)/2, or in other form: T1 - n1∙(n1+n2+1)/2 = 0. 
 

From this a new variable can be constructed as 
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which corresponds to N(0,1), the standard normal distribution (it has to be 

mentioned that for a small number of data this approximation is not valid). Thus, if 

the null hypothesis is true, z = 0. The deviation of z from 0 is caused only by 

Comment 17.  
Mann-Whitney U-test (Detailed solution) 

Question: Is aspirin effective as a pain killer 

for headaches?) 
 

H0: The aspirin is not effective in reducing 

headache, z = 0. 
H1: The aspirin is effective in reducing 

headache, z > 0 (one-tailed test). 

 
1st group (n1 = 8): 

 

7.5 8.3 9.1 6.2 5.4 8.3 6.5 8.4 

2nd group (n2 = 9): 

3.1 5.6 4.5 6.2 5.1 5.3 5.5 4.1 4.3 

 

Assign ranks to all scores! 

 

Subject 
Score 

 

 Rank 

1 3.1 1 

2 4.1 2 

3 4.3 3 

4 4.5 4 

5 5.1 5 

6 5.3 6 

7 5.4 7 

8 5.5 8 

9 5.6 9 

10 6.2 10.5 

11 6.2 10.5 

12 6.5 12 

13 7.5 13 

14 8.3 14.5 

15 8.3 14.5 

16 8.4 16 

17 9.1 17 

 

T = 7+10.5+12+13+14.5+14.5+16+17 = 104.5 

 
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1219898
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  

 
Let the level of significance be very small, α 

= 0.01→ 1 %. 

Instead of standard normal distribution N(0,1) 
one can use t-distribution of the degree of 

freedom ∞ (the two are equivalent). 

Find the critical value zcrit in the table of one-
tailed t-test at the row corresponding to the 

degree of freedom ∞, and column of p = 0.01  

 
zcrit = 2.33.  

 

Compare zm = 3.13 > zcrit = 2.33, 
 

which means that zm falls in the region of 

rejection, thus the null hypothesis is 

rejected (at level of significance of 1 %). 

(The probability that corresponds to the value 

zm  of the sample is  p < 0.0009, therefore the 
probability that the H0 is true and z differs 

from 0 only by chance is very small.) 

 
Based on the above investigation we 

conclude that aspirin is effective in reducing 

headache. 
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chance if H0 is true, or by the fact that the original null hypothesis is not true. 

Decision is made by comparing the calculated z value with the critical value from 

the standard normal distribution N(0,1) at the given p probability level (see 

comment 17.). 

 

SPEARMAN-CORRELATION 
 

Spearman-correlation (rs) is the “non-parametric” equivalent of the correlation 

coefficient (r, also called Pearson coefficient of correlation, see page 17.), which is 

used for calculating degree of relationship between two ordinal variables. 

 

First, scores are ranked, the sum of the squares of differences of corresponding 

ranks (di) is calculated filled with the following formula: 

 

)n(n

d

r

n

i
i

s
1

6

1
2
1

2





   ,    (25) 

 

where n is the number of corresponding pairs of scores (see comment 18. on 

page 33). 

 

The Spearman-correlation coefficient calculated this way takes values between +1 

and –1 just like the Pearson correlation coefficient. Values close to zero indicate 

very little association (or no association at all), and values close to one (plus or 

minus) indicate high degree of association (positive or negative correlation, 

respectively). In the latter case variables are “linked together” in some way. 

 

OTHER APPLICATIONS OF 2x2 TABLES 
 

Besides the χ
2
-tests, 2 x 2 tables occur in other statistical tests as well. It is often of 

interest whether different risk factors are involved in the development of certain 

diseases. To answer such questions, frequency data are collected from two groups, 

and the results are presented in the form of a 2 x 2 table. 

 

Risk factor Disease status 

sick healthy 

present  a b 

absent  c d 

 

Table 10. 

 

Letters a, b, c, d mean the frequencies of the corresponding category. If the 

development of the illness is independent of the examined risk factor, then we 

expect that the ratios of the present versus absent frequencies are the same for the 

healthy and the ill group. Depending on the circumstances there are two basic ways 

of acquiring and analyzing data: prospective (cohort) study and retrospective study 

(case-control study).  

 

PROSPECTIVE, COHORT STUDY 
 

In the prospective, or cohort study, a group of healthy individuals is divided in 

two groups based on the presence of a certain risk factor. These groups are 

followed (observed) for a long time and at the end the contingency table is 

constructed from the collected data.  

 

An example of a prospective, cohort study: 

 

Question: Is smoking associated with a risk for heart attack (acute myocardial 

infarction)? 

 

H0: There is no connection between smoking and heart attack. 

 

Common characteristic (risk factor): smoking / non-smoking 

 

Comment 18. 

Spearman-correlation  
(Detailed solution) 

Question: Is the evaluation of two doctors 

similar? 

 

Two medical doctors make aptitude tests, and 

the question is how similar is their evaluation. 
Both of them examined a group of seven 

employees and evaluated them on a scale of 1 

to 10 (1 means the worst and 10 is the best). 
 

Results are summarized in the following 
table. 

 

Per-

son  

Doctor  

A 

Doctor  

B 

Rank 

A 

Rank  

B 
d 2 

A 10 9 7 6.5 0.25 

B 7 9 6 6.5 0.25 

C 1 3 1 2 1 

D 4 6 3.5 3 0.25 

E 4 7 3.5 4 0.25 

F 3 1 2 1 1 

G 5 8 5 5 0 

Total: 3 

 

If we calculate the Pearson correlation 
coefficient r from the first two columns using 

the formula (19) we get r = 0.78 . 

 
Calculating the Spearman-correlation (rs) was 

from the formula (25)  

 

rs = 1 – (63)/(7(72 – 1)) = 0.95. 

 

In this case we get rs = 0.95.  
 

We get two different numbers for correlation 

coefficient, but both indicate the same 
situation: the two physicians judge 

differently, but if one of them (A) considers 

an employee more qualified, the second 
doctor (B) classifies the same employee more 

qualified as well. 

 
It is important to mention that the ranks 

actually contain less information than 

original data, but they focus on the part of the 
information which is important for the 

decision making. 
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A cohort is a group of subjects who share a common characteristic (e.g., smoking). 

Cohorts may be tracked over extended periods of time (e.g., 10 years), and the 

frequency of heart attack is counted both in the cohort and the control group. Data 

are summarized as usual, in a 2x2 table. 

 

Table 11. 
  

The risk (probability of the condition) is calculated in the two groups separately: 

 The risk in the smoker (exposed) group is: a/(a+b). 

 The risk in the non-smoker group is: c/(c+d). 

Relative risk (RR) is the ratio of the probability of the event (heart attack) 

occurring in the exposed group (smokers) versus the non-exposed group: 
 

)(

)(

)/(

)/(

bac

dca

dcc

baa
RR









     (26) 

 

In other words, smokers would be RR times as likely as non-smokers to develop 

heart attack. If the null hypothesis H0 is true, then the expected value for RR is 1, 

which means that smokers have the same risk of developing heart attack as non-

smokers. 
 

In the next step we calculate the standard error (SE) of the logarithm of the relative 

risk ( ln(RR) ): 
 

c

dcc

a

baa
RRSE

)/(1)/(1
)(ln





     (27) 

 

The reliability of the relative risk (RR) value can be characterized by calculating 

the confidence interval of the RR value, that is the interval of 95% probability 

(±1.96 times, or roughly two times the standard error). Notice that SE of the 

logarithm of RR is calculated above, thus the confidence interval, is not symmetric 

for RR. If the confidence interval contains the value 1, then the null hypothesis is 

accepted, otherwise it is rejected at the given confidence level.  

 

A RETROSPECTIVE, CASE-CONTROL STUDY 
 

In the second case, people with a disease (often, a specific diagnosis) are matched 

with people who do not have the disease (the controls) and the groups are 

compared to find out if other characteristics (risk factors) are also different 

between the two groups. This retrospective observational study is called a case-

control study. 

 

An example of the retrospective study: 

 

Question: Does the risk factor play role in the development of a disease? 

 

H0: There is no connection between the presence of the risk factor and the 

development of the disease. 

 

Common characteristic: disease (case and control)  

 

Data are summarized in the following table: 

 

 Disease status  

Risk factor  yes (case) no (control) Total: 

pprreesseenntt a b a+b 

aabbsseenntt c d c+d 

total: a+c b+d n=a+b+c+d 

 

Table 12. 

 heart attack   

Risk factor  present absent  total: 

ssmmookkeerr a b a+b 

nonsmoker c d c+d 

total: a+c b+d n=a+b+c+d 
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First the odds of an event (disease) is determined in both groups: 

 The odds of the disease in the presence of the risk factor is: a / b. 

 The odds of the disease in the absence of the risk factor is: c / d. 

The odds ratio (OR) is the ratio of the odds of the disease occurring in presence of 

the risk factor to the odds of it occurring in the absence of the risk factor. 

 

cb

da

dc

ba
OR






/

/
    (28) 

 

Similarly to the previous case, the standard error (SE) of the logarithm of the odds 

ratio ( ln(OR) ) can be calculated: 

 

dcba
ORSE

1111
)(ln      (29) 

 

Finally, the corresponding confidence interval can be calculated. If it contains the 

value 1, then the presence of the risk factor does not increase the development of 

the disease (at the given confidence level). 

 

Comparison of the prospective, cohort and retrospective, case-control studies:  

Cohort studies take a long follow-up time to generate useful data and therefore are 

expensive to conduct. Because of the long follow-up time the number of cases 

must be relatively high (it is sensitive to attrition, loss of participants). 

Nevertheless, the results that are obtained from long-term cohort studies are of 

substantially superior quality to retrospective studies, especially in cases when the 

occurrence of the risk factor is very low. 

 

Note that these data can be processed with χ
2
-tests as well. Why do we still use 

prospective, cohort and retrospective, case-control study? The advantage of these 

tests compared to the χ
2
-test is that the decision is based on a numerical value that 

indicates the strength of the risk factor (RR, OR). 

 

STATISTICAL CHARACTERIZATION OF  

DIAGNOSTIC TESTS  
 

Investigation of the reliability, accuracy, and further characterization of diagnostic 

tests is an important field of medical statistics. Any positive or negative result of a 

diagnostic test can be true or false. A therapy based on a false test result can have 

unpredictable and serious consequences. It is very important to know the reliability 

of diagnostic test results. Of course the physician's diagnosis is based on several 

different diagnostic tests, but one has to know what is their value in the diagnosis 

of the given disorder. 
 

In the following, instead of a detailed discussion of the field we will emphasize the 

most important characteristics of diagnostic tests. 
 

Question: How reliable is the result of the test? 

Let us perform the test and compare the result with “reality”. 

There are four basic outcomes in this comparison: 

true positive (TP): sick people correctly diagnosed as sick, 

false positive (FP): healthy people incorrectly identified as sick, 

true negative (TN): healthy people correctly identified as healthy, 

false negative (FN): sick people incorrectly identified as healthy. 

These are summarized in the following table. 

 

 

Real condition 

Test outcome  

total: negative positive 

healthy TN  

(true negative) 
FP  

(false positive) 

TN +FP 

sick FN  

(false negative) 
TP  

(true positive) 

FN + TP 

total TN + FN FP + TP n = TN + FN + FP + TP 

 

Table 13. 
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In such a table the “reality”is always questionable. How could we know the truth, 

the correct values? Sometimes there are very straightforward cases, when the 

diagnosis is known definitely. Another possibility is to use so called “gold 

standard” tests which are extremely reliable. 

 

Definition of some statistical characteristics: 

 

 Prevalence (occurrence of a disease): relative number of cases of the 

disease: (TP + FN)/n. 

 Sensitivity measures the proportion of actual positives which are correctly 

identified as such (e.g. the percentage of sick people who are identified as 

having the condition): TP/(TP+FN). 

 Specificity measures the proportion of negatives which are correctly 

identified as such (e.g. the percentage of healthy people who are identified 

as not having the condition): TN/(TN+FP)  

 

These characteristics are usually calculated as percentages. For the perfect test, 

sensitivity and specificity would be 100 %, for reliable tests they are close to this. 

 

In practice, when evaluating the diagnostic tests, the following considerations are 

made: 

 If the therapy is easy to accomplish and does not involve any serious risk 

for the patient, then high sensitivity is the goal. (Every suspicious case is 

identified as positive.) 

 Otherwise high specificity is usually more important. (Healthy individuals 

should not be cured!) 

 

Although sensitivity and specificity are important characteristics of a diagnostic 

test, the predictive value is an even more important parameter of the test. The 

predictive value indicates the probability of the presence of the disease after a 

positive test result, or similarly, the probability of the absence of the examined 

disease after a negative result. 

 

 Predictive value positive (PVP, post test probability of the disease): 

probability of the true positive result, if the test was positive, TP/(TP+FP) 

 

 Predictive value negative (PVN, post test probability of the lack of 

disease): probability of the true positive result, if the test was positive, 

TN/(TN+FN) 

 

All characteristics depend on the frequency of the occurrence of these diseases. t a 

high frequencyof occurrence the PVP is much higher than in rare diseases. For 

PVN the situation is opposite, it is high for rare diseases. 

 

The discussed parameters characterizing the tests are summarized in Table 14. 
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Table 14. 
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SUMMARY (see Comment 19) 

 

THE STEPS OF HYPOTHESIS TESTS 

 

 Pose the question. 

 

 Choose the proper test. 

 

 Formulate the initial statement: null hypothesis (H0, usually a 

characteristic value is zero) and the alternative hypothesis (H1). 

 

 Theory: knowing the population the question can be answered exactly 

(zero or non-zero). 

 

 Practice: in case of a finite sample the value can be non-zero as a result 

of random sampling. 

 

presumptions 

H0 is true  

(the difference is caused by 

random sampling) 

H0 is not true 

 

 Sample: a random sample, taken into account special medical 

requirements (e.g., having certain disease, any types of disqualification). 

 

 Choose the properly low level of significance  (usually  ≤ 0.05). 

 

 Calculate the proper characteristic value (t,  
2
, . . .) from the sample. 

The theoretical distribution of the value gives the probability of random 

differences. 

 

 Find the theoretical critical value from the table that corresponds to the 

level of significance . 

 

 Decision: (in case of positive one-tailed test) 

1. theoretical critical value ≥ calculated value → H0 is accepted, no reason   

    to reject 

2. theoretical critical value < calculated value → H0 is rejected, the 

    probability that the difference is due only to random sampling is 

    small. 

 

The level of significance of the conclusion:  that in the 2nd case means the 

probability of the wrong decision. 

 

Literature:  

  

Mendenhall, W.: Introduction to 

probability and statistics, Duxbury 

Press, Boston 1987 

Norman T. J. Bailey: Statistical methods 

in biology, Cambridge university press 

1993 

P. Armitage, G. Berry: Statistical 

methods in medical research, Oxford 

1994 

Beth Dawson, Robert G. Trapp: Basic 

and Clinical Biostatistics, Lange 

Medical Books/McGraw-Hill 2001  

Comment 19. 

 

Topics that we discussed here constitute 
only a small part of statistics. More 

detailed knowledge can be obtained from 

the literature listed below. 
 

Statistical tables, which are needed for the 

statistical tests can be found in the 
30. APPENDIX of this manual. 

 

It often happens that data collection and 
the derived conclusion are falsified or 

"face-lifted". Therefore, always pay 

attention to the truthfulness, transparency 
and verifiability of the data and the 

statistics derived from them. The former 

British prime minister was probably 
misinformed several times taking 

advantage of difficult verifiability of 

statistics that finally made him to say 
ironically: 

 

"The only statistics you can trust are those 
you falsified yourself." 

Sir Winston Churchill 
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1. STATISTICAL TABLES 

 
STUDENT'S t-DISTRIBUTION 

 

  p (probability, one-tailed test) 

 

Degree of 

freedom 

0.4 0.25 0.1 0.05 0.025 0.01 0.005 

p (probability, two-tailed test) 

0.8 0.5 0.2 0.1 0.05 0.02 0.01 

1 0.325 1.000 3.078 6.314 12.70 31.82 63.65 

2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 

3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 

4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 

7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 

8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 

9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 

12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 

13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 

14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 

17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 

18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 

19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 

22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 

23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 

24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 

27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 

28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 

29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 

40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 

60 0.255 0.679 1.296 1.671 2.000 2.390 2.66 

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 

  0.250 0.674 1.282 1.645 1.960 2.326 2.576 

 

- 
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 2
 -DISTRIBUTION (CHI SQUARE) 

 

p (probability) 

Degree 

of 

freedom 

 

0.99 

 

0.975 

 

0.95 

 

0.05 

 

0.025 

 

0.01 

 

0.001 

1 0.0000157 0.0000982 0.000393 3.84 5.02 6.63 10.83 

2 0.0201 0.0506 0.103 5.99 7.88 9.21 13.82 

3 0.115 0.216 0.352 7.81 9.35 11.34 16.27 

4 0.297 0.484 0.711 9.49 11.14 13.28 18.47 

5 0.554 0.831 1.15 11.07 12.83 15.09 20.51 

6 0.872 1.24 1.64 12.59 14.45 16.81 22.46 

7 1.24 1.69 2.17 14.07 16.01 18.47 24.32 

8 1.65 2.18 2.73 15.51 17.53 20.09 26.13 

9 2.09 2.70 3.33 16.92 19.02 21.67 27.88 

10 2.56 3.25 3.94 18.31 20.48 23.21 29.59 

11 3.05 3.61 4.57 19.68 21.92 24.72 31.26 

12 3.57 4.40 5.23 21.03 23.34 26.22 32.91 

13 4.11 5.01 5.89 22.36 24.74 27.69 34.53 

14 4.66 5.63 6.57 23.68 26.12 29.14 36.12 

15 5.23 6.26 7.26 25.00 27.49 30.58 37.70 

16 5.81 6.91 7.96 26.33 28.85 32.00 39.25 

17 6.41 7.56 8.67 27.59 30.19 33.41 40.79 

18 7.01 8.23 9.39 28.87 31.53 34.81 42.31 

19 7.63 8.91 10.12 30.14 32.85 36.19 43.82 

20 8.26 9.59 10.85 31.41 34.17 37.57 45.31 

21 8.90 10.28 11.59 32.67 35.48 38.93 46.80 

22 9.54 10.98 12.34 33.92 36.78 40.29 48.27 

23 10.20 11.69 13.09 35.17 38.08 41.64 49.73 

24 10.86 12.40 13.85 36.42 39.36 42.98 51.18 

25 11.52 13.12 14.61 37.65 40.65 44.31 52.62 

26 12.20 13.84 15.38 38.89 41.92 45.64 54.05 

27 12.88 14.57 16.15 40.11 43.19 46.96 55.48 

28 13.56 15.31 16.93 41.34 44.46 48.28 56.89 

29 14.26 16.05 17.71 42.56 45.72 49.59 58.30 

30 14.95 16.79 18.49 43.77 46.98 50.89 59.70 

31 15.66 17.54 19.28 44.99 48.23 52.19 61.10 

32 16.36 18.29 20.07 46.19 49.48 53.49 62.49 

33 17.07 19.05 20.87 47.40 50.73 54.78 63.87 

34 17.79 19.81 21.66 48.60 51.97 56.06 65.25 

35 18.51 20.57 22.47 49.80 53.20 57.34 66.62 

40 22.16 24.43 26.51 55.76 59.34 63.69 73.40 

50 29.71 32.36 34.76 67.51 71.42 76.15 86.66 

60 37.48 40.48 43.19 79.08 83.30 88.38 99.61 

100 70.06 74.22 77.93 124.3 129.5 135.8 149.4 
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2. PROBLEMS 
1. The lengths of four different frog red blood cells are: 18, 17, 21 and 18 m. Calculate the mean, the standard deviation and 

the standard error. ( x = 18.5 m, Qx = 9 m
2
, sx = 1.73 m, xs  = 0.87 m) 

2. The mean of the body heights of 25 students is 170 cm, and the standard deviation is 8 cm. Estimate the expected value at a 

95 % confidence level. ( xsx 2  = 166.8 cm, xsx 2  = 173.2 cm) 

3. In the first series of measurements we have 5 measurement points, and in a second one we have 20. A correlation coefficient 

of 0.6 was calculated from both datasets. Can we claim that the variables are correlated if the level of significance is 5 %? 

(r = 0.6, n1 = 5, n2 = 20, therefore f1 = 3, f2 = 18, t1 = 1.299 does not confirm correlation, but t2 = 3.18 which indicates 

correlation even at 1 % significance level) 

4. A drug preparation contains 20 % active ingredient (mass ratio). Before commercial introduction of the drug the stability of 

the preparation should be confirmed. For this stability test, six preparations were stored in the refrigerator for a time period, 

then the remaining amount of the active ingredient was measured. The result of the analysis showed 20.1, 19.8, 18.9, 19.7, 

19.9 and 20.2 % active ingredient content. Is there a significant difference between the measured and nominal values of the 

active ingredient content of the drug, or the deviation is only by chance? (p = 27 %, not significant) 

5. In parallel to the measurement described in the previous problem, there were six samples stored at room temperature. After 

the same time as in the previous case the active ingredient contents were 19.6, 18.9, 19.5, 20.1, 19.3 and 19.4 %. Should it be 

prescribed to keep the preparation in the refrigerator? (
  
p = 2.1 %, yes it should be stored in the refrigerator) 

6. In a small town 424 individuals were vaccinated prior to an influenza epidemic, while 425 persons in a control group 

received placebo only. 105 infections occurred later among the vaccinated individuals and 140 in the control group. There 

were 31 serious cases in the vaccinated group and 55 in the control group. Decide whether the vaccination against influenza 

was effective or not. (Both the ratio of infections and that of serious infections were significantly smaller among the 

vaccinated persons: p < 1 %) 

7. Successful surgical correction of a special eye disease (non-artherial ischemic optic neuropathia) appeared in a scientific 

report in 1989. There was not known any successful treatment before, hence this surgical method was applied at many 

places. However, short time after, some reported that the treatment was not effective. A surway was made in 25 clinical 

centers involving 244 such patients, 119 of them went through the surgical procedure and 125 was not treated. The data of 

the surway is in the following table: 
 

 better condition same condition worse condition total 

went through the surgery 39 52 28 119 

not treated 53 56 16 125 
 

 Answer the questions using statistical analysis! 

a) is the number of patients in better condition higher after the surgery? (no, p>0.1) 

b) is the worse condition more often among those who went through the surgery? (yes, p<0.05) 

8. The osteocalcin (OC) level of growth-hormone-deficient children was determined before and after 2 years of growth-

hormone therapy. As a control, parallel measurements were done on a group of healthy children. The OC concentration 

values are given in the table below: 

                                                                             OC concentration  (g/l) 

 

In patients In patients In healthy 

before treatment after treatment children 

8.5 14.5 17.3 

7.2 10.2 16.9 

8.3 12.7 17.7 

15.5 16.5 18.6 
 

Two questions were asked in the study: 

a) Is the OC level significantly lower in the growth-hormone-deficient children before treatment than in healthy children? 

(yes, significantly lower) 

b) Did the OC level change as a consequence of the treatment? (yes, significantly) 

9. Women after menopausa often suffer from calcium defficiency. This might support the observation, that frequency of bone 

fractures is higher among women of this age. Can we conclude that the decrease of oestrogen level after menopause results 

calcium defficiency? To investigate this relationship in three different groups of women, a mineral content of bones was 

measured in g/cm
3
 units, that is proportional to the calcium content. First group was from women of 25-50 age, after 

oophorectomy, and had oestrogen sufficiency prooved. Healthy women of the same age group formed the second group, 

before menopausa. Women after menopausa formed the third group. There were 14 women in each group. The results are 

summarized in the following table: 

 

 first group second group third group 

mean (g/cm
3
) 0.93 1.21 0.92 

standard deviation (g/cm
3
) 0.04 0.03 0.04 

 

How would you answer the questions based on the data, that we have ? (yes there is a connection between menopausa 

and calcium defficiency)  


