Membrane transport,
Resting membrane potential

for pharmacy students

2024. 05. 22.

Lecture topics

Topics
+ Cell membrane (function, structure,
semipermeability)

Related practice topics

+ Sensor
+ Membrane transport . ECo
« Passive diffusion
« Diffusion

+ uncharged particle and ion diffusion
- permeability coefficient

« Facilitated diffusion (channels, carriers,
ionophores)

Textbook chapters

+ IlI/4]. Transport phenomena in resting

« Active transport

+ Membrane potential
« Characteristics

cells
+ IIl/42. Resting membrane potential
« Generation
+ Nerst equation
+ Donnan potential

+ Goldman-Hodgkin-Katz equation

Cell membrane function

Cell

+ The basic structural and functional
unit of life,

[r—

,cellula” (it = small room
Prokaryotic and eukaryotic cell types.

Each cell has cytoplasmand cell
membrane (plasma membrane)

precisely controlsthe level of solutes
inside and outside the cell.

Merctitule
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Function of cell membrane: barrier that

Cell membrane structure

Extracellular Fuid

Phospholipd biler o

Fhosphalio
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Cell membrane structure

Phospbatidy ctoline (PC)
Phosphatidylethusolamine (PE)

Phosphatidylserice. (PS)

Sphingomyelin (SM)

Cholesterol
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Structure and semipermeability Membrane transport types

i T T — | PASSVETRANSPORT  ACTIVETRANSPORT

~40 A thick hydrophobic membrane
core SIMPLE DIFFUSION FACILITATED DIFFUSION High Substancs

Permeability is composition dependent
Affected by environmental factors
Tighter packing of fatty acid chains lead
to lower permeability
Gel < liquid disordered < at

T
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Passive diffusion of uncharged particles Passive diffusion of uncharged particles

« Energy source: (electro)chemical gradient of the solute

+ Passive diffusion requires no additional energy source. Fick’s first law: Jnimaterial flux density
Diffusion without a . Steps
helper protein + solute must first lose its waters of hydration Cwr Cy —>Crn2 Cuwz A D:dif fusion coef ficient
olbilie - diffuse across the membrane Jm= _p.2¢ Ac
particies + and then regain its waters on the opposite side. ax 2 cone.gradient
o + The limiting step involves the energy required to lose the
Dy membrane diff. coef .

waters of hydration

Permeability coefficient I. Permeability coefficient Il.

Cmy — €, partition coef ficient
Cur Cy = Cind Cuz S = =Dy - 2= Em1
d Cur @ —— st Cuz
D Jm = —Pm " (€mz=Cm1)
P = m oy g ' -
o Tz = constant = K e gl 100 ghyeenal .0 cg;
wil w2 s
constant {?] - | | I
) Jm = —Pm - K(Cwz = €w1) 10 w? 1w’ w0 10! w0
inereasing permeability —=- ‘permeability coefficient (nmvs)
P=pmK o it emesiy e el
permeability coef ficient L?l /7
—
d

Material flux density (Fick L): [, = —p(cwz2—Cw1)
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Permeability coefficient IlI. Passive diffusion of ions

leakage timesc;

{rapid if small molecule . alycerol)

concentration c .,

‘amount st each second
for glycerolin £ cof

re Lol 0% N
3% 3 400l

50 f the similar glyceraldshyde used in glycolysis was
ot phosphorylated 1t would rapidly leak from cell

Onsager equation:

- i Fick's first law ac
okme v i | 2, cone.gradient
R Pt s, = totslamestiont = px(cad) KA LRT Ac
- e pegpn Sl Jiftux density
Y= pto 4 RT - Inc ~, L: conductivity coef f.
S ——— L —_— X:thermodymamic force
manber ofmolaculos s R i

For a charged particle (k) electrochemical potential

|/ gradent

Apte 2F Ap

+ORT ax

Acy,
=Ly Xg=—Lg- =—Dy(—
Ji = L Xe = =L G )

Ax

flux density of k* particle:  concentration
gradient

Jm material flux density

D:dif fusion coef ficient

4 chemical potential
g molar free enthalpy
Reuniv. gas constant
letelectrochemical potential
F:Faraday constant

2 valency.

@ielectric potential

electric
potential
gradient

K, [sohte]

+ Energy source: inherent solute electrochemical gradient

Facilitated diffusion

Gradient ds rmines direction
No additional energy is required to transport the solute

Final solute distribution reaches equilibrium across the

Mediators: carriers, gated ion-channels, ionophores

Facilitated diffusion

. Channel proteins

+ Transport mainly ions

Supramolecular structures of several subunits
+ span the membrane + hydrophilic core is

formed

membrane. + No conformational change during transport * Eycuaton 8 Given by the bindig energy of
T e + Orders of magnitude faster rate than passive diffusion .+ Gating: stimuli-responsive conformational ubstrote
+ Protein-based mediator molecules embedded in the change - opens or closes the channel Min. 100x slower than channel proteins
= i membrane + stimul: voltage; ligand; second messenger;
e + strongly selective for certain particles mechanics . open-out opemin
}j:’ _— + Exhibits Mwchaehsr‘Me-n(-ensaturatlon kinetics . Rate cca 10557 o \ L
diffotion + Can be selectively inhibited b T -t

Il. Carrier proteins
« Integral membrane proteins

Bind specifically an ion or molecule

Reversible conformational change enables

the transport

Facilitated diffusion - examples
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Facilitated diffusion - examples

Glucose transporters (GLUT)
+ Superfamily of carrier proteins

« Occurin nearly all cells

Abundant in small intestines

Y i ieiion « Integral membrane proteins &
« 12alpha helices in membrane spanning .
region
« Activation energy of glucose should be > K 3
100 k3/mol (passive diffusion)

« BUTItis only 16 kJ/mol (with GLUT)

Department of E
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Facilitated diffusion

1Il. lonophores (,lon bearers”)

+ Small, lipid soluble molecules of usually microbial

« ¥ F
origin o,
Channel formers: long lasting, stationary structures; o o
" on
many fons at a time; rapid flow across a membrane. Lo .

Mobile carriers: on binding on one side of a membrane; [

dissolving; membrane crossing; release. They can only

carry one ion at a time. Vaummaes

wayer ||

Tormar caniar

[rye—

cs and Radiation Biclog,
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Uniport

Sympart Antiport

Active transport

Characteristics
Particles are transported against gradient

@

@4 nonequilibrium distribution of solutes accross the

membrane

Requires energy! Possible sources:
« ATP hydrolysis - ATPases
« Light - photo transporters.

4 + Electrochemical gradient of another substrate -

coupled (secondary) active transporters

Uniporters / co-transporters

Symporters / antiporters

Active transport - examples

Sodium-potassium pump / Na‘-K* pump

ATPase

+ antiporter

accounts for one-third of

human energy expenditure
3Naout/2K"in

electrogenic

Blocker: ouabain, digoxin

Active transport - examples

Examples of Secondary Active Transporters

Cotransporters Antiporters
(symporters)
e LN .
m “ 1 J
LR L .
Vo Posem— oo arehange
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Membrane potential

potential / voltage / ,Resting
v membrane potential”
by b + Electric potential difference between inner and outer surface of

the membrane

« Presentinall living cell

Varies among cell types (-30 mV to -90 mV)

Negative sign: cell interior is negative compared to extracellular

space

Functions:
+ providing power to operate a variety of ‘molecular devices'

embeddedin the membrane (cell as battery)

in electrically excitable cells such as neurons and muscle

cells, it is used for transmitting signals between different

parts of a cell

Charge Separation == = Across Membrane

Membrane potential

Two sides of the membrane has different ionic composition

Intracellular Extracellular

concentration [mM] concentration [mM]

Cell type Nat | K c Na* K cr
Squidgiantaxon | 72 | 345 61 455 10 540
Frog muscle 20 | 139 | 38 120 25 120
Rat muscle 12 [ 180 | 38 150 45 no

Intracelilar

Large phosphate and protein anions inside - p ~0

p is different for the differentions

Electric and chemical potential difference occurs between the

two sides.
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Generation of membrane potential I.

Model 1

[
LI Nerst equation

int X
Presumptions: [ i

+ Closed thermodynamic system
+ Membrane permable to ions .

Electric potential of i* ion in equilibrium = equilibrium potential =
+ Cytoplasm and extracellular space are in electromotive force of a concentration cell of the i jon

thermodynamic equilibrium - for each ion!

. No net transport of fons Squid giant axon Frog muscle
— 2y 52y
+ Thermodynamic force is O —
my ey
- Elctrochemical potenial s the same atthe
STy Sosmy
two sides for each type of ion:
Yoc -56 mVv. -88 mv.
=gt =0

Results: model failed

« Nerst equation is inadequate to interpret resting potential
TInce™ 4 2F et = Tincint 4 25 pint
Ko+ RTIne{ + 2P = o + RTInc{™ + zF g} « Itis not a closed system in equilibrium

« Transport of individual ions is not independent

Generation of membrane potential 1.

Donnan equilibrium (Gibbs-Donnan effect)

Cell membrane)

Closed thermodynamic systern

Presence of nonpermeable charged particles in one side of a
membrane leads to noneven distribution of ions (passive
process!).

- Membrane is permeable only to K* and CI

Electroneutrality at the two sides,

Electrochemical potential is the same at the two sides.

Donnan potential:

b T

+

Equiliorium potential difference due to fonic concentration
Extracellular Cytoplasm
Yeop! differences (determinded by the presence of nondiffusible

anions)

Typical value: Upgnpen ~ -14 MV — relatively small contribution to

membrane potential

©d Radiatior

Generation of membrane potential Ill.

Goldman-Hodgkin-Katz equation flux density of k! electric potential
« Passive ion diffusion maintains an electric qu(cg\ Gifference
potential difference T = ke (A 4 o I B0
ax

Permeability i different for different ions RT Ax

Flux of individual ions = 0 D

electrochemical potential
At rest the transmembrane potential gradient

difference is constant —, total electric Ye=0
charge and particle flux must be 0. e —

:;:A:;Nuxovwon‘;maydepend on each Vs 7H["PK~U(+JN:+Pmu‘["\’“'Jm+Fﬂ T
° O = it K g+ pvge NG oy & per [T

Steady state elecrodiffusion:

Constant electrochemical potential

gradient — constant flow of ions — Squid giant axon Frog muscle

I I I
electrically compensate each other — no | | 62 mV | 92 mv
[ | |

63 mv.

net charge accumulation

-89.2 mV

Thanks for your attention!

Dr. Tamas Bozo
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Pharmaceutical importance - examples
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